[1] Q. Zhang et al., “Mechanism and Process of Recycling Copper and Cyanide from a Hazardous Cyanide Waste Slag,” 2024.
[2] S. Malhotra, M. Pandit, J. C. Kapoor, and D. K. Tyagi, “Photo‐oxidation of cyanide in aqueous solution by the UV/H2O2 process,” J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol., vol. 80, no. 1, pp. 13–19, 2005.
[3] R. Mudliar, S. S. Umare, D. S. Ramteke, and S. R. Wate, “Energy efficient-Advanced oxidation process for treatment of cyanide containing automobile industry wastewater,” J. Hazard. Mater., vol. 164, no. 2–3, pp. 1474–1479, 2009, doi: 10.1016/j.jhazmat.2008.09.118.
[4] N. Kuyucak and A. Akcil, “Cyanide and removal options from effluents in gold mining and metallurgical processes,” Miner. Eng., vol. 50, pp. 13–29, 2013.
[5] L. A. Betancourt-Buitrago, A. Hernandez-Ramirez, J. A. Colina-Marquez, C. F. Bustillo-Lecompte, L. Rehmann, and F. Machuca-Martinez, “Recent developments in the photocatalytic treatment of cyanide wastewater: An approach to remediation and recovery of metals,” Processes, vol. 7, no. 4, 2019, doi: 10.3390/pr7040225.
[6] S. Syed, “Recovery of gold from secondary sources—A review,” Hydrometallurgy, vol. 115, pp. 30–51, 2012.
[7] G. Moussavi, F. Majidi, and M. Farzadkia, “The influence of operational parameters on elimination of cyanide from wastewater using the electrocoagulation process,” Desalination, vol. 280, no. 1–3, pp. 127–133, 2011.
[8] P. P. Das, P. Mondal, A. Sinha, P. Biswas, S. Sarkar, and M. K. Purkait, “Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater,” Chemosphere, vol. 263, p. 128370, 2021.
[9] S. Rostami Tarzam, F. G. Fahimi, R. Amirnejad, A. Tavana, and A. Rahnavard, “Predicting Cyanide Degradability and Destruction Using Artificial Neural Networks: A Case Study in West Azerbaijan, Iran”,” Soil Sediment Contam. An Int. J., pp. 1–16, 2024.
[10] G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, and S. Shekoohyian, “Comparing the efficacy of VUV and UVC/S2O82-advanced oxidation processes for degradation and mineralization of cyanide in wastewater,” Chem. Eng. J., vol. 294, pp. 273–280, 2016.
[11] A. Shahedi, A. K. Darban, A. Jamshidi-Zanjani, M. Homaee, and F. Taghipour, “Effect of ozonation and UV-LED combination on simultaneous removal of toxic elements during electrocoagulation,” Environ. Sci. Pollut. Res., vol. 31, no. 4, pp. 5847–5865, 2024.
[12] M. Sarla, M. Pandit, D. K. Tyagi, and J. C. Kapoor, “Oxidation of cyanide in aqueous solution by chemical and photochemical process,” J. Hazard. Mater., vol. 116, no. 1–2, pp. 49–56, 2004, doi: 10.1016/j.jhazmat.2004.06.035.
[13] M. P. Rayaroth, C. T. Aravindakumar, N. S. Shah, and G. Boczkaj, “Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review,” Chem. Eng. J., vol. 430, p. 133002, 2022.
[14] I. Arslan-Alaton, F. G. Babuna, and G. Iskender, “Application of Advanced Oxidation Processes to Treat Industrial Wastewaters: Sustainability and Other Recent Challenges,” in Advanced Oxidation Processes for Wastewater Treatment, CRC Press, 2022, pp. 39–51.
[15] H. Zhang et al., “Study on ultrasonic enhanced ozone oxidation of cyanide-containing wastewater,” Sep. Purif. Technol., vol. 303, p. 122258, 2022.
[16] B. K. Mert, Ö. Sivrioğlu, T. Yonar, and S. Özçiftçi, “Treatment of jewelry manufacturing effluent containing cyanide using ozone-based photochemical advanced oxidation processes,” Ozone Sci. Eng., vol. 36, no. 2, pp. 196–205, 2014.
[17] C. V. Rekhate and J. K. Srivastava, “Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review,” Chem. Eng. J. Adv., vol. 3, p. 100031, 2020, doi: 10.1016/j.ceja.2020.100031.
[18] T. J. McMillan, E. Leatherman, A. Ridley, J. Shorrocks, S. E. Tobi, and J. R. Whiteside, “Cellular effects of long wavelength UV light (UVA) in mammalian cells,” J. Pharm. Pharmacol., vol. 60, no. 8, pp. 969–976, 2008.
[19] V. Satizabal-Gómez et al., “Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater,” Miner. Eng., vol. 170, no. June, 2021, doi: 10.1016/j.mineng.2021.107031.
[20] M. D. Gurol and W. M. Bremen, “Kinetics and mechanism of ozonation of free cyanide species in water,” Environ. Sci. Technol., vol. 19, no. 9, pp. 804–809, 1985.
[21] K. Chiang, R. Amal, and T. Tran, “Photocatalytic oxidation of cyanide: kinetic and mechanistic studies,” J. Mol. Catal. A Chem., vol. 193, no. 1–2, pp. 285–297, 2003.
[22] R. P. Buck, S. Singhadeja, and L. B. Rogers, “Ultraviolet absorption spectra of some inorganic ions in aqueous solutions,” Anal. Chem., vol. 26, no. 7, pp. 1240–1242, 1954.
[23] D. C. Vuono et al., “Photocatalytic advanced oxidation processes for neutralizing free cyanide in gold processing effluents in arequipa, southern peru,” Sustain., vol. 13, no. 17, 2021, doi: 10.3390/su13179873.
[24] J. M. Monteagudo, L. Rodríguez, and J. Villaseñor, “Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters,” J. Chem. Technol. Biotechnol., vol. 79, no. 2, pp. 117–125, 2004.
[25] U. Kepa, E. Stanczyk-Mazanek, and L. Stepniak, “The use of the advanced oxidation process in the ozone+ hydrogen peroxide system for the removal of cyanide from water,” Desalination, vol. 223, no. 1–3, pp. 187–193, 2008.
[26] J. Staehelin and J. Hoigne, “Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide,” Environ. Sci. Technol., vol. 16, no. 10, pp. 676–681, 1982.
[27] H. W. Prengle Jr, C. E. Mauk, and J. E. Payne, “Ozone-UV oxidation of pesticides in aqueous solution,” in Technical paper presented at the IOI Meeting, Cincinnati, OH, 1976.
[28] Y. Kim, T. I. Qureshi, and K. Min, “Application of advanced oxidation processes for the treatement of cyanide containing effluent,” Environ. Technol., vol. 24, no. 10, pp. 1269–1276, 2003.