مقایسه کارایی روش‌های UV، O3 و تلفیق UV/O3 در تخریب سیانید از پساب مصنوعی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانش اموخته کارشناسی ارشد مهندسی معدن، گرایش معدن و محیط‌ زیست، دانشگاه تربیت مدرس
2 دانشیار دانشگاه تربیت مدرس، دانشکده فنی و مهندسی، گروه مهندسی معدن و محیط زیست
3 استاد دانشگاه تربیت مدرس، دانشکده فنی و مهندسی، گروه مهندسی معدن و محیط زیست
چکیده
سیانید از جمله آلاینده­های بسیار سمی و خطرناکی است که در پساب صنایع معدنی، آبکاری و غیره وجود دارد. در مطالعه حاضر کارایی فرایندهای اکسیداسیون پیشرفته شاملUV، O3 و تلفیق UV/O3 به منظور تخریب سیانید از پساب مصنوعی بررسی شده است. تمامی آزمایش‌ها در یک راکتور نیمه‌ پیوسته انجام گرفت. اثر شرایط عملیاتی مانند غلظت اولیه سیانید، زمان واکنش، سینتیک واکنش و pH مورد بررسی قرار گرفت. آزمایشات تخریب سیانید در این مطالعه، در 4 غلظت مختلف سیانید شامل 50، 100، 200 و 250 میلی‌گرم بر لیتر و همچنین دو مقدار pH برابر 10 و 11 انجام شد. مدت زمان واکنش نیز از 0 تا 90 دقیقه متغیر بود. سایر پارامترهای عملیاتی فرایند در تمامی آزمایش‌ها ثابت نگه داشته شد. نتایج بیانگر آن بود که با استفاده از UV به تنهایی، تخریب سیانید کند است. نتایج نشان داد که راندمان تخریب سیانید توسط فرایند گاز ازن در مقدار 11=pH بیشتر از 10=pH بود. بیشترین راندمان تخریب سیانید در شرایط بهینه فرایند ازن(غلظت اولیه سیانید 50 میلی‌گرم بر لیتر و مدت زمان واکنش 80 دقیقه)، برابر 68 درصد به دست آمد. زمانیکه  UV با O3 تلفیق شد، سرعت تخریب افزایش یافت و تخریب بیش از 50 درصد در مدت زمان 40 دقیقه رخ داد. بیشترین راندمان تخریب سیانید در فرآیند UV/O3، معادل 100 درصد، در 10=pH، غلظت اولیه سیانید 50 میلی‌گرم بر لیتر و زمان واکنش 50 دقیقه به دست آمد. به طور کلی نتایج نشان داد که تخریب سیانید کل می‌تواند با سینتیک شبه مرتبه اول توصیف شود. در نتیجه، می­توان بیان داشت فرایند UV/O3 فرآیندی مؤثر برای تخریب سیانید از پساب است.

 

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Efficiency of UV, O3, and combined UV/O3 methods in cyanide degradation from synthetic wastewater

نویسندگان English

Mahsa Niazi 1
Ahmad Jamshidi 2
Mehdi Homaee 3
1 Master of mining engineering, Mining and Environment, Tarbiat Modares University
2 2- Faculty of Engineering, Department of Mining and Environment, Tarbiat Modares University.
3 Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University
چکیده English

Cyanide is a highly toxic and hazardous pollutant commonly found in the wastewater generated by mining, electroplating, and petrochemical industries. The current research aims to evaluate the efficiency of advanced oxidation techniques such as UV, O3, and UV/O3 combination, to eliminate cyanide from synthetic wastewater. All experiments were conducted in a semi-continuous reactor to investigate the impact of various operating conditions, such as initial cyanide concentration, reaction time, reaction kinetics, and pH. In this study, degradation tests were conducted on cyanide at four different concentrations (50, 100, 200, and 250 mg/L) and two pH levels (10 and 11). The reaction duration ranged from 0 to 90 minutes, with varying lengths. All experiments maintained constant operational parameters for the process, except for the variable being tested. The UV process alone is not very effective in removing cyanide from wastewater. This is because the low absorption coefficient of cyanide in the ultraviolet region limits the performance of UV in cyanide degradation. Additionally, cyanide is a relatively stable compound that requires a high amount of energy to break bonds and destroy them. Therefore, the use of the UV process alone is insufficient for the complete and safe destruction of cyanide from wastewater. It is necessary to combine it with other advanced oxidation processes to effectively remove cyanide from wastewater. According to the results, it was found that the effectiveness of removing cyanide through a single ozonation process was higher at pH 11 as compared to pH 10. The optimal conditions for achieving the highest level of cyanide removal, which is 68%, were found to be a single ozonation process with an initial concentration of 50 mg/L and a reaction time of 80 minutes. The higher efficiency of cyanide degradation at higher pH can be attributed to the greater production of hydroxyl radicals, resulting in an increase in the oxidizing power of the process. The efficiency of cyanide degradation in synthetic wastewater can be greatly improved by using the combined UV/O3 process. In this method, the rate of cyanide degradation is higher when the pH value is lower. This is because the integrated UV/O3 method is strongly dependent on the concentration of hydroxide ions and hydroxyl radicals, which are affected by the pH value. Therefore, the effect of pH value on the efficiency of cyanide degradation by the combined UV/O3 method is significant. When UV and O3 were combined, over 50% degradation occurred in 40 minutes due to increased degradation rate. The highest efficiency for cyanide degradation was achieved at pH 10 and an initial concentration of 50 mg/L using the combined UV/O3 method. The reaction time was 50 minutes and the efficiency was 100%. First and second-order kinetic analyses were conducted for UV, ozone, and combined processes to study their effectiveness in cyanide degradation. The results showed that the combination of UV and ozone was the most effective method for total cyanide degradation from wastewater compared to the other processes studied. Therefore, UV/O3 can be considered as the optimal analytical method for cyanide degradation from wastewater.



 

کلیدواژه‌ها English

Cyanide
Advanced Oxidation
Wastewater
Treatment
Hydroxyl radical
[1] Q. Zhang et al., “Mechanism and Process of Recycling Copper and Cyanide from a Hazardous Cyanide Waste Slag,” 2024.
[2] S. Malhotra, M. Pandit, J. C. Kapoor, and D. K. Tyagi, “Photo‐oxidation of cyanide in aqueous solution by the UV/H2O2 process,” J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol., vol. 80, no. 1, pp. 13–19, 2005.
[3] R. Mudliar, S. S. Umare, D. S. Ramteke, and S. R. Wate, “Energy efficient-Advanced oxidation process for treatment of cyanide containing automobile industry wastewater,” J. Hazard. Mater., vol. 164, no. 2–3, pp. 1474–1479, 2009, doi: 10.1016/j.jhazmat.2008.09.118.
[4] N. Kuyucak and A. Akcil, “Cyanide and removal options from effluents in gold mining and metallurgical processes,” Miner. Eng., vol. 50, pp. 13–29, 2013.
[5] L. A. Betancourt-Buitrago, A. Hernandez-Ramirez, J. A. Colina-Marquez, C. F. Bustillo-Lecompte, L. Rehmann, and F. Machuca-Martinez, “Recent developments in the photocatalytic treatment of cyanide wastewater: An approach to remediation and recovery of metals,” Processes, vol. 7, no. 4, 2019, doi: 10.3390/pr7040225.
[6] S. Syed, “Recovery of gold from secondary sources—A review,” Hydrometallurgy, vol. 115, pp. 30–51, 2012.
[7] G. Moussavi, F. Majidi, and M. Farzadkia, “The influence of operational parameters on elimination of cyanide from wastewater using the electrocoagulation process,” Desalination, vol. 280, no. 1–3, pp. 127–133, 2011.
[8] P. P. Das, P. Mondal, A. Sinha, P. Biswas, S. Sarkar, and M. K. Purkait, “Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater,” Chemosphere, vol. 263, p. 128370, 2021.
[9] S. Rostami Tarzam, F. G. Fahimi, R. Amirnejad, A. Tavana, and A. Rahnavard, “Predicting Cyanide Degradability and Destruction Using Artificial Neural Networks: A Case Study in West Azerbaijan, Iran”,” Soil Sediment Contam. An Int. J., pp. 1–16, 2024.
[10] G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, and S. Shekoohyian, “Comparing the efficacy of VUV and UVC/S2O82-advanced oxidation processes for degradation and mineralization of cyanide in wastewater,” Chem. Eng. J., vol. 294, pp. 273–280, 2016.
[11] A. Shahedi, A. K. Darban, A. Jamshidi-Zanjani, M. Homaee, and F. Taghipour, “Effect of ozonation and UV-LED combination on simultaneous removal of toxic elements during electrocoagulation,” Environ. Sci. Pollut. Res., vol. 31, no. 4, pp. 5847–5865, 2024.
[12] M. Sarla, M. Pandit, D. K. Tyagi, and J. C. Kapoor, “Oxidation of cyanide in aqueous solution by chemical and photochemical process,” J. Hazard. Mater., vol. 116, no. 1–2, pp. 49–56, 2004, doi: 10.1016/j.jhazmat.2004.06.035.
[13] M. P. Rayaroth, C. T. Aravindakumar, N. S. Shah, and G. Boczkaj, “Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review,” Chem. Eng. J., vol. 430, p. 133002, 2022.
[14] I. Arslan-Alaton, F. G. Babuna, and G. Iskender, “Application of Advanced Oxidation Processes to Treat Industrial Wastewaters: Sustainability and Other Recent Challenges,” in Advanced Oxidation Processes for Wastewater Treatment, CRC Press, 2022, pp. 39–51.
[15] H. Zhang et al., “Study on ultrasonic enhanced ozone oxidation of cyanide-containing wastewater,” Sep. Purif. Technol., vol. 303, p. 122258, 2022.
[16] B. K. Mert, Ö. Sivrioğlu, T. Yonar, and S. Özçiftçi, “Treatment of jewelry manufacturing effluent containing cyanide using ozone-based photochemical advanced oxidation processes,” Ozone Sci. Eng., vol. 36, no. 2, pp. 196–205, 2014.
[17] C. V. Rekhate and J. K. Srivastava, “Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review,” Chem. Eng. J. Adv., vol. 3, p. 100031, 2020, doi: 10.1016/j.ceja.2020.100031.
[18] T. J. McMillan, E. Leatherman, A. Ridley, J. Shorrocks, S. E. Tobi, and J. R. Whiteside, “Cellular effects of long wavelength UV light (UVA) in mammalian cells,” J. Pharm. Pharmacol., vol. 60, no. 8, pp. 969–976, 2008.
[19] V. Satizabal-Gómez et al., “Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater,” Miner. Eng., vol. 170, no. June, 2021, doi: 10.1016/j.mineng.2021.107031.
[20] M. D. Gurol and W. M. Bremen, “Kinetics and mechanism of ozonation of free cyanide species in water,” Environ. Sci. Technol., vol. 19, no. 9, pp. 804–809, 1985.
[21] K. Chiang, R. Amal, and T. Tran, “Photocatalytic oxidation of cyanide: kinetic and mechanistic studies,” J. Mol. Catal. A Chem., vol. 193, no. 1–2, pp. 285–297, 2003.
[22] R. P. Buck, S. Singhadeja, and L. B. Rogers, “Ultraviolet absorption spectra of some inorganic ions in aqueous solutions,” Anal. Chem., vol. 26, no. 7, pp. 1240–1242, 1954.
[23] D. C. Vuono et al., “Photocatalytic advanced oxidation processes for neutralizing free cyanide in gold processing effluents in arequipa, southern peru,” Sustain., vol. 13, no. 17, 2021, doi: 10.3390/su13179873.
[24] J. M. Monteagudo, L. Rodríguez, and J. Villaseñor, “Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters,” J. Chem. Technol. Biotechnol., vol. 79, no. 2, pp. 117–125, 2004.
[25] U. Kepa, E. Stanczyk-Mazanek, and L. Stepniak, “The use of the advanced oxidation process in the ozone+ hydrogen peroxide system for the removal of cyanide from water,” Desalination, vol. 223, no. 1–3, pp. 187–193, 2008.
[26] J. Staehelin and J. Hoigne, “Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide,” Environ. Sci. Technol., vol. 16, no. 10, pp. 676–681, 1982.
[27] H. W. Prengle Jr, C. E. Mauk, and J. E. Payne, “Ozone-UV oxidation of pesticides in aqueous solution,” in Technical paper presented at the IOI Meeting, Cincinnati, OH, 1976.
[28] Y. Kim, T. I. Qureshi, and K. Min, “Application of advanced oxidation processes for the treatement of cyanide containing effluent,” Environ. Technol., vol. 24, no. 10, pp. 1269–1276, 2003.