1- Kagan, P., Fischer, A., & Bar‐Yoseph, P. Z. J. I. J. f. N. M. i. E. (1998). New B‐spline finite element approach for geometrical design and mechanical analysis. 41(3), 435-458.
2- Höllig, K., Reif, U., & Wipper, J. J. S. J. o. N. A. (2001). Weighted extended B-spline approximation of Dirichlet problems. 39(2), 442-462.
3- Kagan, P., Fischer, A., & Bar‐Yoseph, P. Z. J. I. J. f. N. M. i. E. (2003). Mechanically based models: Adaptive refinement for B‐spline finite element. 57(8), 1145-1175.
4- Hughes, T. J., Cottrell, J. A., Bazilevs, Y. J. C. m. i. a. m., & engineering. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. 194(39-41), 4135-4195.analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. 194(39-41), 4135-4195.
5- Turner, M. J., Clough, R. W., Martin, H. C., & Topp, L. (1956). Stiffness and deflection analysis of complex structures. journal of the Aeronautical Sciences, 23(9), 805-823.
6- Argyris, J. H. J. N. Y., MACMILLAN CO., OXFORD, PERGAMON PRESS, LTD., . 187 P. (1964). Recent advances in matrix methods of structural analysis(Matrix theory of structures for small and large deflections, using high speed digital computers).
7- Argyris, J. (1965). Continua and Discontinua, opening address to the 1-st Conf. Matrix Methods in Structural Mechanics. In: Wright--Patterson AFB, Dayton, Ohio.
8- Oden, J. T. J. J. o. t. S. D. (1967). Numerical Formulations of Nonlinear Elasticity Problems. 93(3), 235-356.
9- Mallett, R. H., & Marcal, P. V. J. J. o. t. s. d. (1968). Finite element analysis of nonlinear structures. 94(9), 2081-2106.
10- Oden, J. (1969). Finite element applications in nonlinear structural analysis. Paper presented at the Proceedings of the ASCE Symposium on Application of Finite Element Methods in Civil Engineering.
11- Haisler, W. E., Stricklin, J. A., & Stebbins, F. J. J. A. J. (1972). Development and evaluation of solution procedures for geometrically nonlinear structural analysis. 10(3), 264-272.
12- Zinckiewicz, O. (1971). The finite element in engeneering science. In: Mc Graw-Hill, London.
13- Brebbia, C., & Connor, J. J. J. o. t. E. M. D. (1969). Geometrically nonlinear finite-element analysis. 95(2), 463-486.
14- Hassani, B., Tavakkoli, S. M., & Ardiani, M. (2015). Solution of Nonlinear Incompressible Hyperelastic Problems by Isogeometric Analysis Method %J Journal of Solid and Fluid Mechanics. 5(2), 29-41. doi:10.22044/jsfm.2015.429
15- Richardson, L. F. (1911). IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210(459-470), 307-357.
16-Babuška, I., & Rheinboldt, W. C. J. I. J. f. N. M. i. E. (1978). A‐posteriori error estimates for the finite element method. 12(10), 1597-1615.
17-Babuška, I., Rheinboldt, W. J. C. M. i. A. M., & Engineering. (1979). Adaptive approaches and reliability estimations in finite element analysis. 17, 519-540.
18-Babuška, I., Strouboulis, T., Upadhyay, C. J. C. M. i. A. M., & Engineering. (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. 114(3-4), 307-378.
19-Babuška, I., Strouboulis, T., Upadhyay, C., Gangaraj, S., & Copps, K. J. I. j. f. n. m. i. e. (1994). Validation of a posteriori error estimators by numerical approach. 37(7), 1073-1123.
20-Zienkiewicz, O. C., & Zhu, J. Z. J. I. J. f. N. M. i. E. (1992). The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. 33(7), 1331-1364.
21- Hassani, B., Ganjali, A., & Hojatpanh Montazary, A. (2012). Analysis and Shape Optimization of Axsymmetric Structures by Isogeometric Analysis Method. Journal of Solid and Fluid Mechanics, 1(1), 1-13.
22- Hassani, B., Ganjali, A., & Tavakkoli, M. (2012). An isogeometrical approach to error estimation and stress recovery. European Journal of Mechanics-A/Solids, 31(1), 101-109.
23-Piegl, L., & Tiller, W. (2012). The NURBS book: Springer Science & Business Media.
24- Owen, D. R. J. (1980). Finite elements in plasticity, theory and practice.
25- Sheng, D., Sloan, S. W., & Abbo, A. J. (2002). An automatic Newton–Raphson scheme. The International Journal Geomechanics, 2(4), 471-502.
26- Nayak, G. C., & Zienkiewicz, O. C. (1972). Convenient form of stress invariants for plasticity. Journal of the Structural Division, 98(4), 949-954.
27-Boroomand, B., & Zienkiewicz, O. (1999). Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour. Computer methods in applied mechanics and engineering, 176(1-4), 127-146.
28- Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: its basis and fundamentals: Elsevier.
29- Lubliner, J. 1990, Plasticity Theory. Macmillan Publishing Company, New York, pp.239-244.
30- Chakrabarty, J. „1987, Theory of Plasticity. In: McGraw Hill, New York, NY, pp.164-171.
31- de Souza Neto, E. A., Peric, D., & Owen, D. R. (2011). Computational methods for plasticity: theory and applications: John Wiley & Sons, pp. 387-388.
32- Hill, R. (1950). The mathematical theory of plasticity, Clarendon. Oxford, 613, 614, pp.98-110.
33- Lubliner, J. 1990, Plasticity Theory. Macmillan Publishing Company, New York, pp.216-228.
34- Chakrabarty, J. „1987, Theory of Plasticity. In: McGraw Hill, New York, NY, pp.323-333.
35- de Souza Neto, E. A., Peric, D., & Owen, D. R. (2011). Computational methods for plasticity: theory and applications: John Wiley & Sons, pp. 244- 247.