[1] Gao Y. Z., Ling W. T., 2006. Comparison for plant uptake of phenanthrene and pyrene from soil and water. Biology and Fertility of soils, Vol. 42, 387-394.
[2] Wilson S. C., Jones K. C., 1993. Bioremediation of soil contaminated with poly-cyclic aromatic hydrocarbons (PAHs): a review, Environmental Pollution Vol. 81, 229-249.
[3] Nazir A. k., 2011. Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alexandria Engineering Journal 50. 331-335.
[4] Evgin E., Das B. M., 1992. Mechanical behavior of an oil contaminated sand. In: Ua A (ed) Envir. geotechnol. proc. mediterranean conf. Balkema, Rotterdam. pp 101–108.
[5] Shin E. C., Das B. M., 2001. Bearing capacity of unsaturated oilcontaminated sand. Offshore Polar Eng, 11:220–226.
[6] Safehian H., Rajabi A. M., Ghasemzadeh H., 2018. Effect of diesel contamination on geotechnical properties of illite soil, Engineering Geology 241 55-63.
[7] Khamehchiyan M., Hossein Charkhabi A., Tajik M., 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils, Engineering Geology 89:220–229.
[8] Kermani M., Ebadi T., 2012. The effect of oil contamination on the geotechnical properties of fine-grained soils, Soil Sediment Contam Int J 21:655–671.
[9] Khosravi E., Ghasemzadeh H., Sabour M. R., Yazdani H., 2013. Geotechnical properties of gas oil contaminated kaolinite, Engineering Geology 166:11–16.
[10] Ijimdiya T. S., 2013. The effects of oil contamination on the consolidation properties of lateritic soil, Dev Appl Ocean Eng (DAOE) 2:53–59.
[11] Naeini S. A., Shojaedin M. M., 2014. Effect of oil contamination on the liquefaction behavior of sandy soils, Int J Environ Chem Ecolog Geol Geophys Eng 8:289–292.
[12] Solly G., Aswathy E. A., Berlin S., Krishnaprabha N. P., Maria G., 2015. Study of geotechnical properties of diesel oil contaminated soil. Int J Civil Struct Eng Res 2:113–117.
[13] Onyelowe, K. C., 2015. Pure crude oil contamination on Amaoba lateriticsoil. Electronic J Geotech Eng (EJGE) 20:1129–1142.
[14] Meuser, H., 2012. treatment of contaminated and disturbed land, Soil remediation and rehabilitation, Vol. 23.
[15] Davis, E. L. 1998. Ground water issue: Steam injection for soil and aquifer remediation. Rep. No. EPA/540/S-97/505. Washington, DC: USEPA.
[16] Farrar, M. E., Morgenstern, J. A., Amari, A. MacMurray, T. P., Killeen, and R. F. Blundy. 2010. Electrical resistance heating of soils at C-reactor at the Savannah River site. Proc. Ann. Int. Conf. Soils Sediments Water Energy 13 (1): 328–342.
[17] Paria, S., and P. K. Yuet., 2006. Solidification–stabilization of organic and inorganic contaminants using portland cement: A literature review. J. Environ. Eng, 14 (4): 217–255.
[18] Oluwatuyi, O., E., Ojuri, O. O., and Khoshghalb, A., 2020. Cement-lime stabilization of crude oil contaminated kaolin clay. Journal of Rock Mechanics and Geotechnical Engineering, 12(1): 160-167. https://doi.org/10.1016/j.jrmge.2019.07.010.
[19] Zomorodian A. Moghispour Sh. Soleymani A. 2017. Strength enhancement of clean and kerosene-contaminated sandy lean clay using nanoclay and nanosilica as additives, Brendan C. O'Kelly, Applied Clay Science 140, 140–147.
[20] Nasehi, A., Urmeihy, A., Morsali, A., Nikudel, MR., 2015. Use of nanoscale zero-valent iron to improve the shear strength parameters of gas oil contaminated clay, Geopersia 5(2), pp. 161-175.
[21] Ahmad, S., Al-Amoudi, O.S.B., Mustafa, Y.M., Maslehuddin, M. and Al-Malack, M.H., 2020. Stabilization and Solidification of Oil-Contaminated SandySoil Using Portland Cement and SupplementaryCementitious Materials, J. Mater. Civ. Eng, 32(8): 04020220.
[22] Jha A K and Sivapullaiah P V. 2020. Lime stabilization of soil: a physico-chemical and micro mechanistic perspective. Indian Geotechnical Journal, 50: 339-347. https://doi.org/10.1007/s40098-019-00371-9.
[23] Gartner E. 2004. Industrially interesting approaches to low-CO2 cements, Cement and Concrete research, 34(9): 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
[24] Zhang, M., Guo, H., El-Korchi, T., Zhang, G., and Tao, M., 2013. Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Construction and Building Materials 47: 1468-1478.
[25] Cristelo, N., Glendinning, S., Fernandes, L., and Pinto, A. T. 2013. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation, Acta Geotechnica 8(4): 395-405.
[26] Mohajan H K. 2017. Greenhouse gas emissions. Global warming and climate change. Proceedings of the 15th Chittagong Conference on Mathematical Physics, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS). Chittagong, Bangladesh. March.
[27] Lead C. 2005. Mineral carbonation and industrial uses of carbon dioxide. CARBON DIOXIDE CAPTURE AND STORAGE, 319.
[28] Keykha, H. A., Romiani, H. M., Asadi, A., and Kawasaki, S., 2019. Ammonium-free carbonate- producing bacteria as an ecofriendly soil biostabilizer, Geotechnical Testing Journal. 42(1):19-29. https://doi.org/10.1520/GTJ20170353.
[29] Keykha, H. A., Asadi, A., Huat, BB., and Kawasaki, S., 2018. Microbial induced calcite precipitation by Sporosarcinapasteurii and Sporosarcina aquimarina, Environmental Geotechnics, 6(8): 562-566. https://doi.org/10.1680/jenge.16.00009.
[30] Venuleo, S., Laloui, L., Terzis, D., Hueckel, T., and Hassan, M., 2016. Microbially induced calcite precipitation effect on soil thermal conductivity, Géotechnique Letters. 6(1): 39-44.
[31] Keykha, H. A, Romiani, H. M, Zebardast, E., Asadi, A., and Kawasaki, S., 2021. CO2-induced carbonate minerals as soil stabilizing agents for dust suppression, Aeolian Research 52. 100731. https://doi.org/10.1016/j.aeolia.2021.100731
[32] Romiani, H. M., Keykha, H. A., Talebi, M., Asadi, A., and Kawasaki, S., 2021. Green soil improvement: using carbon dioxide to enhance the behaviour of clay. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1-26. https://doi.org/10.1680/jgrim.20.00073.
[33] حسین زاده محمد، حسنلوراد محمود، نائینی سید ابولحسن، 1400، بررسی عملکرد جاذبهای مختلف در خاکهای آلوده با فلز سنگین سرب، مجله علمی پژوهشی عمران امیرکبیر، شماره 53.
[34] G. Bergquist. 2019. Relationship, selection, and optimization of filter aid, filter media and clarification technologies for contaminant fines removal from process slurries and liquids. Industry Candidates Poster Session 2019, Held at the 2019 AIChE Spring Meeting and 15th Global Congress on Process Safety, 2019, no. May, pp. 110–125.
[35] N. S. Zafisah, W. L. Ang, D. J. Johnson, A. W. Mohammad, and N. Hilal. Effect of different filter
aids used in cake filtration process on the removal of suspended solids in anaerobically digested palm
oil mill effluent (POME). Desalin. Water Treat., vol. 110, pp. 362–370, 2018.
[36] ASTM C 128, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, 2017
[37] Dercová, K., Sejáková, Z., Skokanová, M., Barančíková, G. and Makovníková, J., 2007. Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite. Chemosphere, 66(5), pp.783-790.
[38] Liang, Y., Zhang, X., Dai, D. and Li, G., 2009. Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation, 63(1), pp.80-87.
[39] Drăghici, E.M., Scarlat, V., Pele, M., Dobrin, E., Matei, G.M. and Matei, S., 2018. Effect of the use of new methods for the remediation of oil polluted soil. Scientific Papers-Series B, Horticulture, (62), pp.471-476.
[40] Bakar, N. A., Mohamed, J. J., Sulaiman, M. A., & Muhammad, N. M. N. 2020. The Study of Mambong Clay Properties Improvement with Calcium Carbonate Addition. IOP Conference Series: Earth and Environmental Science (Vol. 596, No. 1, p. 012005). IOP Publishing