بکارگیری افزودنی‌های سازگار با محیط زیست به عنوان جاذب آلاینده‌های نفتی و بررسی تاثیر آنها بر مقاومت برشی ماسه آلوده

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی کارشناسی ارشد، دانشگاه بین المللی امام خمینی-مرکز آموزش عالی فنی و مهندسی بویین زهرا-گروه مهندسی عمران
2 استادیار و عضو هیئت علمی، دانشگاه بین المللی امام خمینی-مرکز آموزش عالی فنی و مهندسی بویین زهرا-گروه مهندسی عمران
چکیده
در این تحقیق تأثیر آلاینده­های نفتی بر مقاومت برشی خاک ماسه­ای بررسی شده و قابلیت افزودنی­های معدنی شامل زئولیت و پرلیت و همچنین کربنات منیزیم تولید شده از جذب دی اکسید کربن، جهت استفاده به عنوان جاذب­ آلاینده­های نفتی مورد مطالعه قرار گرفته است. خاک مورد مطالعه ماسه بددانه­بندی شده اخذ شده از دشت قزوین بوده و آلاینده­های مورد بررسی گازوئیل و نفت سفید می­باشند. به منظور ارزیابی تأثیر این آلاینده­ها بر مقاومت برشی ماسه، آزمایش­های برش مستقیم بر روی نمونه­های اشباع شده با آلاینده نفتی و در تنش­های عمودی 50، 100 و 200 کیلوپاسکال صورت پذیرفت. نتایج حاصل نشان داد که زاویه اصطکاک داخلی خاک آلوده نسبت به خاک تمیز بیش از 10 درجه کاهش می­یابد. با توجه به نتایج آزمایش­های برش مستقیم انجام شده بر روی نمونه­های آلوده عمل­آوری شده با جاذب­ها، افزودن جاذب­ها تأثیر چندانی بر مقاومت برشی ماسه آلوده نداشته و تغییرات زاویه اصطکاک داخلی نمونه­های عمل­آوری شده با جاذب نسبت به ماسه آلوده کمتر از 10 درصد می­باشد. نمونه­های عمل­آوری شده با پرلیت و زئولیت به ترتیب بیشترین و کمترین مقاومت برشی را نشان دادند. در این تحقیق پتانسیل جذب آلاینده­های نفتی توسط جاذب­ها نیز مورد بررسی قرار گرفت. با توجه به نتایج ارزیابی­ها، درصد جذب کربنات منیزیم بیش از 90 درصد بوده که بیشتر از سایر جاذب­های مورد مطالعه در این پژوهش می­باشد. نتایج این تحقیق نشان می­دهد که کربنات منیزیم مورد مطالعه در این پژوهش از یک سو در فرآیند تولید باعث جذب گاز آلاینده دی اکسید کربن شده و از سوی دیگر قابلیت جذب درصد قابل توجهی از آلاینده­های نفتی در خاک را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of echo-friendly additives as the adsorbents of Petroleum contaminants and their effect on the shear strength of contaminated sand

نویسندگان English

Amin Zarei 1
Hamed Abdeh Keykha 2
Hadi Mohamadzadeh Romiani 2
1 M.Sc. Student of Geotechnical Engineering of Imam Khomeini International University-Buein Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran.
2 Assistant Prof., Department of Civil Engineering of Imam Khomeini International University-Buein Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran.
چکیده English

Petroleum products and their derivatives cause severe soil pollution through transportation, leaks in pipelines or improper storage. These contaminants may affect the physical or chemical parameters of the soil. Nowadays, due to the increase in construction projects and consequently the need for suitable lands, the construction of structures on lands with contaminated soils is necessary. To determine the optimal methods for rehabilitation of contaminated soils, it is necessary to recognize the contaminated soil behavior and characteristics. There are several methods for stabilization of contaminated soils depending on the type of soils and their pollution. In selecting the appropriate method and materials, various aspects such as environmental issues, availability and cost-effectiveness of the method should be considered. In this study, the effect of oil pollutants on the geomechanical parameters of the sandy soil has been investigated and on the other hand, the performance of different environmentally friendly materials as adsorbents of pollutants and also their effect on the contaminated soil behavior was studied. The studied soil is poorly graded sand that has been sampled from Qazvin district. The petroleum pollutants studied in this study are kerosene and gasoil. Three different materials incuding zeolite, perlite, and produced magnesite were used as sorbent in this study. In this study, the carbon dioxide emissions from industry were utilized to produce magnesium carbonate minerals. In the first step, the percentage of pollutant absorption for studied materials including the sand and sorbents was investigated. The results showed that the magnesite had the highest capability to absorb petroleum contaminants. The percentage of pollutant absorption in magnesite was about 91% for gasoil and 85% for kerosene, while in studied sand it was 26% and 21% for gasoil and kerosene, respectively. The other sorbents including perlite and zeolite also showed high percentages of pollutant absorption. In order to investigate the effect of petroleum pollutants in the shear strength of sand, the direct shear tests was conducted on pure and polluted sample. The soil specimens with dimension of 10x10x3 cm and dry density of 18.35 kN/m3 were prepared by dry air pluviation method. After installing the sample in the device and before performing the test, the sample was saturated with contaminant. The specimens were sheared under different vertical stresses of 50, 100 and 200 kPa. The results showed a decrease in shear strength and more than 10 degrees decrease in internal friction angle of contaminated samples with respect to pure sand. The direct shear tests were conducted on the contaminated samples, treated by different sorbents. The results demonstrated an increase in shear strength for samples treated with perlite, but a loss in shear strength for samples treated with zeolite. The difference in shear strength between the magnesite-treated samples and the untreated samples was not significant. The study confirmed that perlite, zeolite, and magnesite have a capability to absorb petroleum contaminants in soils. Carbon dioxide is one of the most influential factors in global warming in the coming decades, so the magnesite produced by capturing CO2 and its application as a pollutant absorbent can be an encouraging finding of this study.

کلیدواژه‌ها English

Contaminated sand
Petroleum contaminants
Direct Shear Test
Mineral sorbents
Magnesite
Carbon dioxide capturing
[1] Gao Y. Z., Ling W. T., 2006. Comparison for plant uptake of phenanthrene and pyrene from soil and water. Biology and Fertility of soils, Vol. 42, 387-394.
[2] Wilson S. C., Jones K. C., 1993. Bioremediation of soil contaminated with poly-cyclic aromatic hydrocarbons (PAHs): a review, Environmental Pollution Vol. 81, 229-249.
[3] Nazir A. k., 2011. Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alexandria Engineering Journal 50. 331-335.
[4] Evgin E., Das B. M., 1992. Mechanical behavior of an oil contaminated sand. In: Ua A (ed) Envir. geotechnol. proc. mediterranean conf. Balkema, Rotterdam. pp 101–108.
[5] Shin E. C., Das B. M., 2001. Bearing capacity of unsaturated oilcontaminated sand. Offshore Polar Eng, 11:220–226.
[6] Safehian H., Rajabi A. M., Ghasemzadeh H., 2018. Effect of diesel contamination on geotechnical properties of illite soil, Engineering Geology 241 55-63.
[7] Khamehchiyan M., Hossein Charkhabi A., Tajik M., 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils, Engineering Geology 89:220–229.
[8] Kermani M., Ebadi T., 2012. The effect of oil contamination on the geotechnical properties of fine-grained soils, Soil Sediment Contam Int J 21:655–671.
[9] Khosravi E., Ghasemzadeh H., Sabour M. R., Yazdani H., 2013. Geotechnical properties of gas oil contaminated kaolinite, Engineering Geology 166:11–16.
[10] Ijimdiya T. S., 2013. The effects of oil contamination on the consolidation properties of lateritic soil, Dev Appl Ocean Eng (DAOE) 2:53–59.
[11] Naeini S. A., Shojaedin M. M., 2014. Effect of oil contamination on the liquefaction behavior of sandy soils, Int J Environ Chem Ecolog Geol Geophys Eng 8:289–292.
[12] Solly G., Aswathy E. A., Berlin S., Krishnaprabha N. P., Maria G., 2015. Study of geotechnical properties of diesel oil contaminated soil. Int J Civil Struct Eng Res 2:113–117.
[13] Onyelowe, K. C., 2015. Pure crude oil contamination on Amaoba lateriticsoil. Electronic J Geotech Eng (EJGE) 20:1129–1142.
[14] Meuser, H., 2012. treatment of contaminated and disturbed land, Soil remediation and rehabilitation, Vol. 23.
[15] Davis, E. L. 1998. Ground water issue: Steam injection for soil and aquifer remediation. Rep. No. EPA/540/S-97/505. Washington, DC: USEPA.
[16] Farrar, M. E., Morgenstern, J. A., Amari, A. MacMurray, T. P., Killeen, and R. F. Blundy. 2010. Electrical resistance heating of soils at C-reactor at the Savannah River site. Proc. Ann. Int. Conf. Soils Sediments Water Energy 13 (1): 328–342.
[17] Paria, S., and P. K. Yuet., 2006. Solidification–stabilization of organic and inorganic contaminants using portland cement: A literature review. J. Environ. Eng, 14 (4): 217–255.
[18] Oluwatuyi, O., E., Ojuri, O. O., and Khoshghalb, A., 2020. Cement-lime stabilization of crude oil contaminated kaolin clay. Journal of Rock Mechanics and Geotechnical Engineering, 12(1): 160-167. https://doi.org/10.1016/j.jrmge.2019.07.010.
[19] Zomorodian A. Moghispour Sh. Soleymani A. 2017. Strength enhancement of clean and kerosene-contaminated sandy lean clay using nanoclay and nanosilica as additives, Brendan C. O'Kelly, Applied Clay Science 140, 140–147.
[20] Nasehi, A., Urmeihy, A., Morsali, A., Nikudel, MR., 2015. Use of nanoscale zero-valent iron to improve the shear strength parameters of gas oil contaminated clay, Geopersia 5(2), pp. 161-175.
[21] Ahmad, S., Al-Amoudi, O.S.B., Mustafa, Y.M., Maslehuddin, M. and Al-Malack, M.H., 2020. Stabilization and Solidification of Oil-Contaminated SandySoil Using Portland Cement and SupplementaryCementitious Materials, J. Mater. Civ. Eng, 32(8): 04020220.
[22] Jha A K and Sivapullaiah P V. 2020. Lime stabilization of soil: a physico-chemical and micro mechanistic perspective. Indian Geotechnical Journal, 50: 339-347. https://doi.org/10.1007/s40098-019-00371-9.
[23] Gartner E. 2004. Industrially interesting approaches to low-CO2 cements, Cement and Concrete research, 34(9): 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
[24] Zhang, M., Guo, H., El-Korchi, T., Zhang, G., and Tao, M., 2013. Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Construction and Building Materials 47: 1468-1478.‏
[25] Cristelo, N., Glendinning, S., Fernandes, L., and Pinto, A. T. 2013. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation, Acta Geotechnica 8(4): 395-405.‏
[26] Mohajan H K. 2017. Greenhouse gas emissions. Global warming and climate change. Proceedings of the 15th Chittagong Conference on Mathematical Physics, Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences (JNIRCMPS). Chittagong, Bangladesh. March.
[27] Lead C. 2005. Mineral carbonation and industrial uses of carbon dioxide. CARBON DIOXIDE CAPTURE AND STORAGE, 319.
[28] Keykha, H. A., Romiani, H. M., Asadi, A., and Kawasaki, S., 2019. Ammonium-free carbonate- producing bacteria as an ecofriendly soil biostabilizer, Geotechnical Testing Journal. 42(1):19-29. https://doi.org/10.1520/GTJ20170353.
[29] Keykha, H. A., Asadi, A., Huat, BB., and Kawasaki, S., 2018. Microbial induced calcite precipitation by Sporosarcinapasteurii and Sporosarcina aquimarina, Environmental Geotechnics, 6(8): 562-566. https://doi.org/10.1680/jenge.16.00009.
[30] Venuleo, S., Laloui, L., Terzis, D., Hueckel, T., and Hassan, M., 2016. Microbially induced calcite precipitation effect on soil thermal conductivity, Géotechnique Letters. 6(1): 39-44.
[31] Keykha, H. A, Romiani, H. M, Zebardast, E., Asadi, A., and Kawasaki, S., 2021. CO2-induced carbonate minerals as soil stabilizing agents for dust suppression, Aeolian Research 52. 100731. https://doi.org/10.1016/j.aeolia.2021.100731
[32] Romiani, H. M., Keykha, H. A., Talebi, M., Asadi, A., and Kawasaki, S., 2021. Green soil improvement: using carbon dioxide to enhance the behaviour of clay. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1-26. https://doi.org/10.1680/jgrim.20.00073.
[33] حسین زاده محمد، حسنلوراد محمود، نائینی سید ابولحسن، 1400، بررسی عملکرد جاذب‌های مختلف در خاک‌های آلوده با فلز سنگین سرب، مجله علمی پژوهشی عمران امیرکبیر، شماره 53.
[34] G. Bergquist. 2019. Relationship, selection, and optimization of filter aid, filter media and clarification technologies for contaminant fines removal from process slurries and liquids. Industry Candidates Poster Session 2019, Held at the 2019 AIChE Spring Meeting and 15th Global Congress on Process Safety, 2019, no. May, pp. 110–125.
[35] N. S. Zafisah, W. L. Ang, D. J. Johnson, A. W. Mohammad, and N. Hilal. Effect of different filter
aids used in cake filtration process on the removal of suspended solids in anaerobically digested palm
oil mill effluent (POME). Desalin. Water Treat., vol. 110, pp. 362–370, 2018.
[36] ASTM C 128, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, 2017
[37] Dercová, K., Sejáková, Z., Skokanová, M., Barančíková, G. and Makovníková, J., 2007. Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite. Chemosphere, 66(5), pp.783-790.
[38] Liang, Y., Zhang, X., Dai, D. and Li, G., 2009. Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation, 63(1), pp.80-87.
[39] Drăghici, E.M., Scarlat, V., Pele, M., Dobrin, E., Matei, G.M. and Matei, S., 2018. Effect of the use of new methods for the remediation of oil polluted soil. Scientific Papers-Series B, Horticulture, (62), pp.471-476.
[40] Bakar, N. A., Mohamed, J. J., Sulaiman, M. A., & Muhammad, N. M. N. 2020. The Study of Mambong Clay Properties Improvement with Calcium Carbonate Addition. IOP Conference Series: Earth and Environmental Science (Vol. 596, No. 1, p. 012005). IOP Publishing