1. Deraemaeker, A., et al., Vibration-based structural health monitoring using output-only measurements under changing environment. Mechanical systems and signal processing, 2008. 22(1): p. 34-56.
2. De Moor, B.L., On the number of rows and columns in subspace identification methods. 2003.
3. Wu, C., et al., Stabilization diagrams to distinguish physical modes and spurious modes for structural parameter identification. Journal of Vibroengineering, 2017. 19(4): p. 2777-2794.
4. Mrabet, E., M. Abdelghani, and N. Ben Kahla, A new criterion for the stabilization diagram used with stochastic subspace identification methods: an application to an aircraft skeleton. Shock and Vibration, 2014. 2014.
5. Rainieri, C. and G. Fabbrocino, Influence of model order and some block rows on accuracy and precision of modal parameter estimates in stochastic subspace identification. International Journal of Lifecycle Performance Engineering 10, 2014. 1(4): p. 317-334.
6. Priori, C., M. De Angelis, and R. Betti, On the selection of user-defined parameters in data-driven stochastic subspace identification. Mechanical Systems and Signal Processing, 2018. 100: p. 501-523.
7. Li, S., et al., Parametric analysis of SSI algorithm in modal identification of high arch dams. Soil Dynamics and Earthquake Engineering, 2020. 129: p. 105929.
8. Tarinejad, R. and M. Pourgholi, Processing of Ambient Vibration Results using Stochastic Subspace Identification based on Canonical Correlation Analysis. Modares Mechanical Engineering, 2015. 15(7).
9. Tarinejad, R. and M. Pourgholi, Modal identification of arch dams using balanced stochastic subspace identification. Journal of Vibration and Control, 2018. 24(10): p. 2030-2044.
10. Chen, C.-T., Linear system theory, and design. 1995: Oxford University Press, Inc.
11. Chen, H.-F., P. Kumar, and J. Van Schuppen, On Kalman filtering for conditionally Gaussian systems with random matrices. Systems & Control Letters, 1989. 13(5): p. 397-404.
12. Peeters, B., System Identification and Damage Detection in Civil Engeneering, in Faculteit Toegepaste Wetenschappen Arenbergkasteel. 2000, Katholieke Universiteit Leuven: Heverlee (Belgium).
13. Katayama, T., Subspace methods for system identification. 2006: Springer.
14. Desai, U.B., D. Pal, and R.D. Kirkpatrick, A realization approach to stochastic model reduction. International Journal of Control, 1985. 42(4): p. 821-838.
15. Van Overschee, P. and B.L. De Moor, Subspace identification for linear systems: theory, implementation, applications. Vol. 3. 1996: Kluwer academic publishers Dordrecht.