[1] Åkesson B. Understanding Bridge Collapses. 5th ed. Taylor & Francis; 2008.
[2] Biezma MV, Schanack F. Collapse of steel bridges. J Perform Constr Facil 2007;21:398–405. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:5(398).
[3] Tweed MH, Tweed MH. A summary and analysis of bridge failures 1969.
[4] Lee GC, Mohan SB, Huang C, Fard BN. A study of U.S. bridge failures (1980–2012). Tech Rep MCEER -13-0008 2013.
[5] Overview A, Failures B. Overview of Bridges in Vietnam Main Failure Types for Bridges in Vietnam Main Failure Types for Reinforced Concrete Superstructures . For the reinforced 2003:415–22.
[6] Schultz AE, Gastineau AJ. Bridge collapse. Elsevier Inc.; 2016. https://doi.org/10.1016/B978-0-12-800058-8.00031-1.
[7] Diaz EEM, Moreno FN, Mohammadi J. Investigation of common causes of bridge collapse in Colombia. Pract Period Struct Des Constr 2009;14:194–200. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000006.
[8] Rujin M, Chuanjie C, Minglei M, Airong C. Performance-based design of bridge structures under vehicle-induced fire accidents : Basic framework and a case study 2019;197. https://doi.org/10.1016/j.engstruct.2019.109390.
[9] Alberto Makino. Measurement o f residual stresses using the holographic hole drilling technique. Stanford University, 1994.
[10] Ontario Ministry of Transportation. Ontario Structure Inspection Manual (OSIM). vol. 2000. 2008.
[11] Maierhofer C, Reinhardt H-W, Dobmann G. Non-destructive evaluation of reinforced concrete structures. vol. 1. 2010. https://doi.org/10.1533/9781845699536.
[12] Garg RK, Chandra S, Kumar A. Analysis of bridge failures in India from 1977 to 2017. Struct Infrastruct Eng 2020;0:1–18. https://doi.org/10.1080/15732479.2020.1832539.
[13] Dalia ZM, Bagchi S, Sabamehr A, Bagchi A, Bhowmick A. Life Cycle Cost-Benefit Analysis of Shm of I-35 W St. Anthony Falls Bridge. Int Symp Struct Heal Monit Nondestruct Test 2018.
[14] Xie F, Levinson D. Evaluating the effects of the I-35W bridge collapse on road-users in the twin cities metropolitan region. Transp Plan Technol 2011;34:691–703. https://doi.org/10.1080/03081060.2011.602850.
[15] Bridge Life-Cycle Cost Analysis, Report 483 Cooperative Highway Program. 2002.
[16] Cook W, Barr PJ. Observations and Trends among Collapsed Bridges in New York State. J Perform Constr Facil 2017;31:1–6. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000996.
[17] Xu FY, Zhang MJ, Wang L, Zhang JR. Recent Highway Bridge Collapses in China: Review and Discussion. J Perform Constr Facil 2016;30:1–8. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000884.
[18] Peng W, Tang Z, Wang D, Cao X, Dai F, Taciroglu E. A forensic investigation of the Xiaoshan ramp bridge collapse. Eng Struct 2020;224:111203. https://doi.org/10.1016/j.engstruct.2020.111203.
[19] Tan JS, Elbaz K, Wang ZF, Shen JS, Chen J. Lessons learnt from bridge collapse: A view of sustainable management. Sustain 2020;12:1–16. https://doi.org/10.3390/su12031205.
[20] Micieli-voutsinas J. An absent presence : Affective heritage at the National September 11th Memorial & Museum. Emot Sp Soc 2016:1–12. https://doi.org/10.1016/j.emospa.2016.09.005.
[21] Han K, Young J, Eun H, Ra S, Hee E, Yoon H. Social support moderates association between posttraumatic growth and trauma-related psychopathologies among victims of the Sewol Ferry Disaster 2019;272:507–14. https://doi.org/10.1016/j.psychres.2018.12.168.
[22] Nuti C, Briseghella B, Chen A, Lavorato D, Iori T, Vanzi I. Relevant outcomes from the history of Polcevera Viaduct in Genova, from design to nowadays failure. J Civ Struct Heal Monit 2020;10:87–107. https://doi.org/10.1007/s13349-019-00371-6.
[23] Morgese M, Ansari F, Domaneschi M, Cimellaro GP. Post-collapse analysis of Morandi’s Polcevera viaduct in Genoa Italy. J Civ Struct Heal Monit 2020;10:69–85. https://doi.org/10.1007/s13349-019-00370-7.
[24] Rania N, Coppola I, Martorana F, Migliorini L. The Collapse of the Morandi Bridge in Genoa on 14 August 2018 : A Collective Traumatic Event and Its Emotional Impact Linked to the Place and Loss of a Symbol 2019.
[25] Cusumano N, Siemiatycki M, Vecchi V. The politicization of public–private partnerships following a mega-project disaster: the case of the Morandi Bridge Collapse. J Econ Policy Reform 2020;00:1–17. https://doi.org/10.1080/17487870.2020.1760101.
[26] Verzobio A, Bolognani D, Quigley J, Zonta D. Quantifying the benefit of structural health monitoring: can the value of information be negative? Struct Infrastruct Eng 2021:1–22. https://doi.org/10.1080/15732479.2021.1890139.
[27] Giordano PF, Prendergast LJ, Limongelli MP. A framework for assessing the value of information for health monitoring of scoured bridges. J Civ Struct Heal Monit 2020;10:485–96. https://doi.org/10.1007/s13349-020-00398-0.
[28] The Manual for Bridge Evaluation. AASHTO; 2018.
[29] Bridge Inspection Manual – Routin Inspection. 2019.
[30] FHWA - Federal Highway Administration. Bridge Inspector’ s Reference Manual 2006;1:1754.
[31] Thompson PD, Shepard RW. AASHTO Commonly-Recognized Bridge Elements. 2000.
[32] The Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges. 1995.
[33] Bridge Inspection Manual - LEVEL 2 (Visual). 2019.
[34] Bridge Inspection Manual – Level 1. 2019.
[35] Alipour M, Harris DK, Ozbulut OE. Vibration Testing for Bridge Load Rating 2016;2:175–84. https://doi.org/10.1007/978-3-319-29751-4.
[36] Thompson PD, Ford KM, Arman MHR, Labi S, Sinha KC, Shirole AM. Estimating Life Expectancies of Highway Assets, Volume 1: Guidebook. vol. 1. National Academies Press; 2012. https://doi.org/10.17226/22782.
[37] Ford KM, Arman MHR, Labi S, Sinha KC, Thompson PD, Shirole AM, et al. Estimating Life Expectancies of Highway Assets, Volume 2: Final Report. vol. 2. National Academies Press; 2012. https://doi.org/10.17226/22783.
[38] Asset Management Guide for Local Agency Bridges in Michigan. 2011.
[39] Experiences of California, Florida, and South Dakota. n.d.
[40] Ahmad AS. Bridge Preservation Guide. 2018.
[41] Lake N, Seskis J. Bridge Management Using Performance Models. Sydney: 2013.
[42] Phares BM, Graybeal BA, Rolander DD, Moore ME, Washer GA. Reliability and accuracy of routine inspection of highway bridges. Transp Res Rec 2001:82–92. https://doi.org/10.3141/1749-13.
[43] Hyde K. AUDIT OF OVERSIGHT OF LOAD RATINGS AND POSTINGS ON STRUCTURALLY DEFICIENT BRIDGES ON THE NATIONAL HIGHWAY SYSTEM 2006.
[44] Santamaria Ariza M, Zambon I, S. Sousa H, Campos e Matos JA, Strauss A. Comparison of forecasting models to predict concrete bridge decks performance. Struct Concr 2020;21:1240–53. https://doi.org/10.1002/suco.201900434.
[45] Graybeal BA, Phares BM, Rolander DD, Moore M, Washer G. Visual inspection of highway bridges. J Nondestruct Eval 2002;21:67–83. https://doi.org/10.1023/A:1022508121821.
[46] Phares BM, Washer GA, Rolander DD, Graybeal BA, Moore M. Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability. J Bridg Eng 2004;9:403–13. https://doi.org/10.1061/(asce)1084-0702(2004)9:4(403).
[47] Sherman RJ, Hebdon MH, Lloyd JB. Diagnostic Load Testing for Improved Accuracy of Bridge Load Rating. J Perform Constr Facil 2020;34:1–9. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001483.
[48] Commander B. Evolution of bridge diagnostic load testing in the USA. Front Built Environ 2019;5. https://doi.org/10.3389/fbuil.2019.00057.
[49] Manual for Bridge Rating Through Load Testing 1998.
[50] O’Malley C, Wang N, Ellingwood BR, Abdul-HamidZureick. Condition Assessment of Existing BRIDGE STRUCTURES; REPORT OF TASKS 2 AND 3 – BRIDGE TESTING PROGRAM. 2009.
[51] Transportation Research Board. Primer on Bridge Load Testing. Washington, D.C.: 2019.
[52] Peiris A, Sun C, Harik I. Lessons learned from six different structural health monitoring systems on highway bridges. J Low Freq Noise Vib Act Control 2018;0:1–15. https://doi.org/10.1177/1461348418815406.
[53] Zhang F, Norouzi M, Hunt VJ, Helmicki A. Structural health monitoring system for Ironton-Russell Bridge, Ohio and Kentucky: Phase 1. Substructure construction. Transp Res Rec 2015;2504:159–67. https://doi.org/10.3141/2504-18.
[54] Nagarajaiah S, Dyke S, Lynch J, Smyth A, Agrawal A, Symans M, et al. Current Directions of Structural Health Monitoring and Control in USA. Adv Sci Technol 2008;56:277–86. https://doi.org/10.4028/www.scientific.net/AST.56.277.
[55] Inaudi D. 11 - Structural health monitoring of bridges: general issues and applications. In: Karbhari VM, Ansari F, editors. Struct. Heal. Monit. Civ. Infrastruct. Syst., Woodhead Publishing; 2009, p. 339–70. https://doi.org/https://doi.org/10.1533/9781845696825.2.339.
[56] Seo J, Phares B, Lu P, Wipf T, Dahlberg J. Bridge rating protocol using ambient trucks through structural health monitoring system. Eng Struct 2013;46:569–80. https://doi.org/10.1016/j.engstruct.2012.08.012.
[57] Deng Y, Phares BM. Automated bridge load rating determination utilizing strain response due to ambient traffic trucks. Eng Struct 2016;117:101–17. https://doi.org/10.1016/j.engstruct.2016.03.004.
[58] Sanayei M, Phelps JE, Sipple JD, Bell ES, Brenner BR. Instrumentation, nondestructive testing, and finite-element model updating for bridge evaluation using strain measurements. J Bridg Eng 2012;17:130–8. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000228.
[59] Habel WR. 14 - Structural health monitoring research in Europe: trends and applications. In: Karbhari VM, Ansari F, editors. Struct. Heal. Monit. Civ. Infrastruct. Syst., Woodhead Publishing; 2009, p. 435–62. https://doi.org/https://doi.org/10.1533/9781845696825.2.435.
[60] Wenzel H, Hiroshi Tanaka. SAMCO Monitoring Glossary. 2006.
[61] Rücker PW, Hille DF, Rohrmann DR. Guideline for Structural Health Monitoring. Berlin: 2006.
[62] Brownjohn JMW. Structural health monitoring of civil infrastructure. Philos Trans R Soc A Math Phys Eng Sci 2007;365:589–622.
[63] Brühwiler, E., Faber-Nielsen, M. H., Isler, A., Lang, T. P., Lüchinger, P. P, J. et al. Fundamentals of the Conservation of Structures. Zurich: 2011.
[64] Lin X, Zhang L, Guo Q, Zhang Y. Dynamic finite element model updating of prestressed concrete continuous box-girder bridge. Earthq Eng Eng Vib 2009;8:399–407.
[65] Zhang QW, Chang T-YP, Chang CC. Finite-element model updating for the Kap Shui Mun cable-stayed bridge. J Bridg Eng 2001;6:285–93.
[66] Li H, Ou J. The state of the art in structural health monitoring of cable-stayed bridges. J Civ Struct Heal Monit 2016;6:43–67. https://doi.org/10.1007/s13349-015-0115-x.
[67] Moreu F, Li X, Li S, Zhang D. Technical specifications of structural health monitoring for highway bridges: New Chinese structural health monitoring code. Front Built Environ 2018;4:10.
[68] Nguyen A, Chan THT, Zhu X. Real world application of SHM in Australia 2019.
[69] Mufti AA, Neale KW. State-of-the-art of FRP and SHM applications in bridge structures in Canada. Compos Polycon, Am Compos Manuf Assoc Tampa, FL USA 2007.
[70] Daum W. Guidelines for structural health monitoring. Handb. Tech. diagnostics, Springer; 2013, p. 539–41.
[71] Chan T, Thambiratnam D. Structural health monitoring in Australia 2011:1–229.
[72] Zhao H, Ding Y, Li A, Ren Z, Yang K. Live-load strain evaluation of the prestressed concrete box-girder bridge using deep learning and clustering. Struct Heal Monit 2020;19:1051–63. https://doi.org/10.1177/1475921719875630.
[73] Duzgun Agdas, M.ASCE1; Jennifer A. Rice MAJRM and IRL, Abstract: Comparison of Visual Inspection and Structural-Health Monitoring As Bridge Condition Assessment Methods Duzgun Agdas, M.ASCE1; Jennifer A. Rice, M.ASCE2; Justin R. Martinez3; and Ivan R. Lasa4 Abstract: J Perform Constr Facil 2016;30:1–10. https://doi.org/10.1061/(ASCE)CF.
[74] Phares B, Lu P, Wipf T, Greimann L, Seo J. Evolution of a Bridge Damage-Detection Algorithm 2004. https://doi.org/10.3141/2331-07.
[75] Phares B, Lu P, Wipf T, Greimann L, Seo J. Field Validation of a Statistical-Based Bridge Damage-Detection Algorithm 2013:1227–38. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000467.
[76] Li S, Sun L. Detectability of Bridge-Structural Damage Based on Fiber-Optic Sensing through Deep-Convolutional Neural Networks. J Bridg Eng 2020;25:04020012. https://doi.org/10.1061/(asce)be.1943-5592.0001531.
[77] Xu G, Kareem A, Shen L. Surrogate Modeling with Sequential Updating: Applications to Bridge Deck–Wave and Bridge Deck–Wind Interactions. J Comput Civ Eng 2020;34:04020023. https://doi.org/10.1061/(asce)cp.1943-5487.0000904.
[78] Akgül F, Frangopol DM. Bridge Rating and Reliability Correlation: Comprehensive Study for Different Bridge Types. J Struct Eng 2004;130:1063–74. https://doi.org/10.1061/(asce)0733-9445(2004)130:7(1063).
[79] Ding Y, Li A. Assessment of bridge expansion joints using long-term displacement measurement under changing environmental conditions. Front Archit Civ Eng China 2011;5:374–80. https://doi.org/10.1007/s11709-011-0122-x.
[80] Miao CQ, Deng Y, Ding YL, Li AQ. Damage alarming for bridge expansion joints using novelty detection technique based on long-term monitoring data. J Cent South Univ 2013;20:226–35. https://doi.org/10.1007/s11771-013-1480-4.
[81] Park S, Ahmad S, Yun C-B, Roh Y. Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp Mech 2006;46:609–18.
[82] Behnia A, Chai HK, Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr Build Mater 2014;65:282–302.
[83] Andreades C, Malfense Fierro GP, Meo M. A nonlinear ultrasonic SHM method for impact damage localisation in composite panels using a sparse array of piezoelectric PZT transducers. Ultrasonics 2020;108:106181. https://doi.org/10.1016/j.ultras.2020.106181.
[84] Ni YQ, Xia HW, Wong KY, Ko JM. In-service condition assessment of bridge deck using long-term monitoring data of strain response. J Bridg Eng 2012;17:876–85. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000321.
[85] Kromanis R, Kripakaran P. SHM of bridges: characterising thermal response and detecting anomaly events using a temperature-based measurement interpretation approach. J Civ Struct Heal Monit 2016;6:237–54. https://doi.org/10.1007/s13349-016-0161-z.
[86] Frangopol DM, Strauss A, Kim S. Bridge Reliability Assessment Based on Monitoring. J Bridg Eng 2008;13:258–70. https://doi.org/10.1061/(asce)1084-0702(2008)13:3(258).
[87] Liu M, Frangopol DM, Kim S. Bridge System Performance Assessment from Structural Health Monitoring: A Case Study. J Struct Eng 2009;135:733–42. https://doi.org/10.1061/(asce)st.1943-541x.0000014.
[88] Cappello C. Theory of Decision Based on Structural Health Monitoring. University of Trento, 2017.
[89] Zhang WH, Qin J, Lu DG, Thöns S, Faber MH. VoI-informed decision-making for SHM system arrangement. Struct Heal Monit 2020. https://doi.org/10.1177/1475921720962736.
[90] Pozzi M, Der Kiureghian A. Assessing the value of information for long-term structural health monitoring. Heal Monit Struct Biol Syst 2011 2011;7984:79842W. https://doi.org/10.1117/12.881918.
[91] Beskhyroun S, Wegner LD, Sparling BF. Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures. Struct Control Heal Monit 2011:n/a-n/a. https://doi.org/10.1002/stc.
[92] European Cooperation in Science and Technology n.d. https://www.cost.eu/.