ارائه چارچوبی برای تعیین ارزش مالی پایش سلامت سازه‌ها در مدیریت نگهداشت پل‌ها؛ مطالعه موردی تاثیر پایش سلامت سازه‌ها برای مقاوم‌سازی یک پل

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 مدیر فنی شرکت آیسنس
2 مدیر عامل شرکت آیسنس
3 کارشناس ارشد فنی شرکت آیسنس
4 استاد تمام دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر
چکیده
پایش سلامت سازه ها، با وجود سپری شدن بیش از یک دهه از ورود آن به خدمات مهندسی عمران در ایران، همچنان به شکلی موثر در مدیریت نگه داشت پل ها مورد استفاده قرار نمی گیرد. این مسئله از یک سو به دلیل استفاده از روش های بیشتر غیرکاربردی و ارائه داده ها به جای ارائه اطلاعات سازگار با تصمیم گیری در مورد وضعیت پل ها؛ و از سوی دیگر به دلیل عدم معرفی چارچوبی مدون برای تشخیص ارزش مالی یک پروژه پایش سلامت و همچنین عدم ارائه معیاری معتبر به منظور برگزیدن طرح بهینه پیشنهادی پایش سلامت بوده است. در این مقاله به منظور ارائه راهکاری مناسب برای حل چالش های مذکور، آنالیز ارزش اطلاعات به عنوان چارچوبی مناسب برای تعیین ارزش ریالی پروژه های پایش سلامت معرفی شده است. افزون بر این، روشی مناسب و بهینه نیز برای انجام پروژه های پایش سلامت پل ها ارائه شده است. آنالیز ارزش اطلاعاتی روشی است که مشخص میکند با استفاده از اطلاعات دست آمده از یک پروژه پایش سلامت، تصمیم اتخاذ شده چه مقدار مقرون به صرفه تر شده است. همچنین، با انجام این آنالیز امکان انتخاب بهترین طرح پایش از بین چندین طرح از نظر اقتصادی فراهم می شود.در پایان به عنوان نمونه، آنالیز ارزش اطلاعات برای پایش سلامت یک پل شهری نیز مورد بحث قرار گرفته است. بر اساس نتایج بدست آمده از این آنالیز، به کار بردن سنسورهای کرنش سنج به تعداد و با دقتی مشخص به هدف به روزسازی مدل عددی، می تواند اطلاعاتی ارزشمند را در رابطه با ایمنی این پل در اختیار مدیر تصمیم گیرنده قرار دهد. همچنین با استفاده از این تحلیل بهترین طرح سنسورگذاری برای پایش سلامت این پل به دست آمده است.

کلمات کلیدی: پل، پایش سلامت سازه ها، به روزسازی مدل عددی، نگهداشت پل ها ، آنالیز ارزش اطلاعات، کرنش سنج

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Introducing a framework for determining the financial value of Structural Health Monitoring on maintenance management of bridges; The case study of the effect of SHM on retrofitting of a bridge

نویسندگان English

Amir Hossein Nazemi 1
Mehdi Afshar 2
Ali Pakzad 3
Alireza Rahai 4
1 CTO at ISENSE
2 CEO at ISENSE
3 Technical Expert at ISENSE
4 Full Professor of Civil Engineering Department, Amirkabir University of Technology
چکیده English

The safety of bridges as the vital arteries of cities is of great importance. There are several factors that raise concerns about the safe performance of bridges, and resolving these concerns are dependent on the appropriate decision-making of urban managers throughout the service life of bridge. These factors can be divided into two major types. The first type are factors affecting the safety of a part or whole structure of bridge and producing concerns about the bridge collapse. For easing the danger of collapse, totally or partially, a proper decision should be made to improve the behavior of a specific part of bridge at a certain time during its service life. The second type are factors influencing the safety of one or more bridge elements and increasing the life cycle costs of bridge. To prevent the growth of bridge costs due to deterioration, an appropriate plan for repair and maintenance should be implemented in order to enhance the condition of one or several elements.

In order to make the right decision, it is necessary to obtain accurate information on the condition of bridges. One of the best ways to get this information is to use bridge health monitoring. Health monitoring is the process of information acquisition from structure by installing sensors on its components and analyzing the data obtained from implemented sensors. By bridge structural health monitoring and interpreting the gathered data, the access to accurate and timely information, which is consistent with the reality of the bridge structure, is provided. Having the correct information about the bridge, the managers can decide at a lower level of risk. However, choosing specific monitoring strategy among different health monitoring systems for a bridge is a challenge that should be solved. A Quantitative index is needed to find the best technically and economically monitoring system.

The value of information (VoI) analysis is used for determining the effectiveness of monitoring information in decision-making. VoI is a method which quantifies the price of information and specifies the cost-effectiveness of decisions made on the basis of monitoring. This analysis also makes it possible to choose the most economical monitoring strategy among several alternatives. In the VoI calculation, all the uncertainties involved in the performance of a Health monitoring and probabilities of any anticipated event are considered. Thus, the decision making based on VoI is risk-based and reliable especially for important structures like bridges.

In this paper, after investigating the worries and solutions for eliminating worries about the bridges in detail and introducing the applications of structural health monitoring (SHM) systems for bridges, the equations governing the VoI analysis is presented and the procedures for determining the VoI is discussed, and as an example, the VoI analysis of a bridge is discussed. According to the results of this analysis, implementing a specific amount of strain gauges with specific accuracy can provide worthy information about the bridge safety for the manager. Moreover, by the VoI analysis, the best approach for sensing system of SHM in the bridge is determined.

کلیدواژه‌ها English

Bridge
Health Monitoring
Model Updating
Repair and Maintenance
Value of information
[1] Åkesson B. Understanding Bridge Collapses. 5th ed. Taylor & Francis; 2008.
[2] Biezma MV, Schanack F. Collapse of steel bridges. J Perform Constr Facil 2007;21:398–405. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:5(398).
[3] Tweed MH, Tweed MH. A summary and analysis of bridge failures 1969.
[4] Lee GC, Mohan SB, Huang C, Fard BN. A study of U.S. bridge failures (1980–2012). Tech Rep MCEER -13-0008 2013.
[5] Overview A, Failures B. Overview of Bridges in Vietnam Main Failure Types for Bridges in Vietnam Main Failure Types for Reinforced Concrete Superstructures . For the reinforced 2003:415–22.
[6] Schultz AE, Gastineau AJ. Bridge collapse. Elsevier Inc.; 2016. https://doi.org/10.1016/B978-0-12-800058-8.00031-1.
[7] Diaz EEM, Moreno FN, Mohammadi J. Investigation of common causes of bridge collapse in Colombia. Pract Period Struct Des Constr 2009;14:194–200. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000006.
[8] Rujin M, Chuanjie C, Minglei M, Airong C. Performance-based design of bridge structures under vehicle-induced fire accidents : Basic framework and a case study 2019;197. https://doi.org/10.1016/j.engstruct.2019.109390.
[9] Alberto Makino. Measurement o f residual stresses using the holographic hole drilling technique. Stanford University, 1994.
[10] Ontario Ministry of Transportation. Ontario Structure Inspection Manual (OSIM). vol. 2000. 2008.
[11] Maierhofer C, Reinhardt H-W, Dobmann G. Non-destructive evaluation of reinforced concrete structures. vol. 1. 2010. https://doi.org/10.1533/9781845699536.
[12] Garg RK, Chandra S, Kumar A. Analysis of bridge failures in India from 1977 to 2017. Struct Infrastruct Eng 2020;0:1–18. https://doi.org/10.1080/15732479.2020.1832539.
[13] Dalia ZM, Bagchi S, Sabamehr A, Bagchi A, Bhowmick A. Life Cycle Cost-Benefit Analysis of Shm of I-35 W St. Anthony Falls Bridge. Int Symp Struct Heal Monit Nondestruct Test 2018.
[14] Xie F, Levinson D. Evaluating the effects of the I-35W bridge collapse on road-users in the twin cities metropolitan region. Transp Plan Technol 2011;34:691–703. https://doi.org/10.1080/03081060.2011.602850.
[15] Bridge Life-Cycle Cost Analysis, Report 483 Cooperative Highway Program. 2002.
[16] Cook W, Barr PJ. Observations and Trends among Collapsed Bridges in New York State. J Perform Constr Facil 2017;31:1–6. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000996.
[17] Xu FY, Zhang MJ, Wang L, Zhang JR. Recent Highway Bridge Collapses in China: Review and Discussion. J Perform Constr Facil 2016;30:1–8. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000884.
[18] Peng W, Tang Z, Wang D, Cao X, Dai F, Taciroglu E. A forensic investigation of the Xiaoshan ramp bridge collapse. Eng Struct 2020;224:111203. https://doi.org/10.1016/j.engstruct.2020.111203.
[19] Tan JS, Elbaz K, Wang ZF, Shen JS, Chen J. Lessons learnt from bridge collapse: A view of sustainable management. Sustain 2020;12:1–16. https://doi.org/10.3390/su12031205.
[20] Micieli-voutsinas J. An absent presence : Affective heritage at the National September 11th Memorial & Museum. Emot Sp Soc 2016:1–12. https://doi.org/10.1016/j.emospa.2016.09.005.
[21] Han K, Young J, Eun H, Ra S, Hee E, Yoon H. Social support moderates association between posttraumatic growth and trauma-related psychopathologies among victims of the Sewol Ferry Disaster 2019;272:507–14. https://doi.org/10.1016/j.psychres.2018.12.168.
[22] Nuti C, Briseghella B, Chen A, Lavorato D, Iori T, Vanzi I. Relevant outcomes from the history of Polcevera Viaduct in Genova, from design to nowadays failure. J Civ Struct Heal Monit 2020;10:87–107. https://doi.org/10.1007/s13349-019-00371-6.
[23] Morgese M, Ansari F, Domaneschi M, Cimellaro GP. Post-collapse analysis of Morandi’s Polcevera viaduct in Genoa Italy. J Civ Struct Heal Monit 2020;10:69–85. https://doi.org/10.1007/s13349-019-00370-7.
[24] Rania N, Coppola I, Martorana F, Migliorini L. The Collapse of the Morandi Bridge in Genoa on 14 August 2018 : A Collective Traumatic Event and Its Emotional Impact Linked to the Place and Loss of a Symbol 2019.
[25] Cusumano N, Siemiatycki M, Vecchi V. The politicization of public–private partnerships following a mega-project disaster: the case of the Morandi Bridge Collapse. J Econ Policy Reform 2020;00:1–17. https://doi.org/10.1080/17487870.2020.1760101.
[26] Verzobio A, Bolognani D, Quigley J, Zonta D. Quantifying the benefit of structural health monitoring: can the value of information be negative? Struct Infrastruct Eng 2021:1–22. https://doi.org/10.1080/15732479.2021.1890139.
[27] Giordano PF, Prendergast LJ, Limongelli MP. A framework for assessing the value of information for health monitoring of scoured bridges. J Civ Struct Heal Monit 2020;10:485–96. https://doi.org/10.1007/s13349-020-00398-0.
[28] The Manual for Bridge Evaluation. AASHTO; 2018.
[29] Bridge Inspection Manual – Routin Inspection. 2019.
[30] FHWA - Federal Highway Administration. Bridge Inspector’ s Reference Manual 2006;1:1754.
[31] Thompson PD, Shepard RW. AASHTO Commonly-Recognized Bridge Elements. 2000.
[32] The Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges. 1995.
[33] Bridge Inspection Manual - LEVEL 2 (Visual). 2019.
[34] Bridge Inspection Manual – Level 1. 2019.
[35] Alipour M, Harris DK, Ozbulut OE. Vibration Testing for Bridge Load Rating 2016;2:175–84. https://doi.org/10.1007/978-3-319-29751-4.
[36] Thompson PD, Ford KM, Arman MHR, Labi S, Sinha KC, Shirole AM. Estimating Life Expectancies of Highway Assets, Volume 1: Guidebook. vol. 1. National Academies Press; 2012. https://doi.org/10.17226/22782.
[37] Ford KM, Arman MHR, Labi S, Sinha KC, Thompson PD, Shirole AM, et al. Estimating Life Expectancies of Highway Assets, Volume 2: Final Report. vol. 2. National Academies Press; 2012. https://doi.org/10.17226/22783.
[38] Asset Management Guide for Local Agency Bridges in Michigan. 2011.
[39] Experiences of California, Florida, and South Dakota. n.d.
[40] Ahmad AS. Bridge Preservation Guide. 2018.
[41] Lake N, Seskis J. Bridge Management Using Performance Models. Sydney: 2013.
[42] Phares BM, Graybeal BA, Rolander DD, Moore ME, Washer GA. Reliability and accuracy of routine inspection of highway bridges. Transp Res Rec 2001:82–92. https://doi.org/10.3141/1749-13.
[43] Hyde K. AUDIT OF OVERSIGHT OF LOAD RATINGS AND POSTINGS ON STRUCTURALLY DEFICIENT BRIDGES ON THE NATIONAL HIGHWAY SYSTEM 2006.
[44] Santamaria Ariza M, Zambon I, S. Sousa H, Campos e Matos JA, Strauss A. Comparison of forecasting models to predict concrete bridge decks performance. Struct Concr 2020;21:1240–53. https://doi.org/10.1002/suco.201900434.
[45] Graybeal BA, Phares BM, Rolander DD, Moore M, Washer G. Visual inspection of highway bridges. J Nondestruct Eval 2002;21:67–83. https://doi.org/10.1023/A:1022508121821.
[46] Phares BM, Washer GA, Rolander DD, Graybeal BA, Moore M. Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability. J Bridg Eng 2004;9:403–13. https://doi.org/10.1061/(asce)1084-0702(2004)9:4(403).
[47] Sherman RJ, Hebdon MH, Lloyd JB. Diagnostic Load Testing for Improved Accuracy of Bridge Load Rating. J Perform Constr Facil 2020;34:1–9. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001483.
[48] Commander B. Evolution of bridge diagnostic load testing in the USA. Front Built Environ 2019;5. https://doi.org/10.3389/fbuil.2019.00057.
[49] Manual for Bridge Rating Through Load Testing 1998.
[50] O’Malley C, Wang N, Ellingwood BR, Abdul-HamidZureick. Condition Assessment of Existing BRIDGE STRUCTURES; REPORT OF TASKS 2 AND 3 – BRIDGE TESTING PROGRAM. 2009.
[51] Transportation Research Board. Primer on Bridge Load Testing. Washington, D.C.: 2019.
[52] Peiris A, Sun C, Harik I. Lessons learned from six different structural health monitoring systems on highway bridges. J Low Freq Noise Vib Act Control 2018;0:1–15. https://doi.org/10.1177/1461348418815406.
[53] Zhang F, Norouzi M, Hunt VJ, Helmicki A. Structural health monitoring system for Ironton-Russell Bridge, Ohio and Kentucky: Phase 1. Substructure construction. Transp Res Rec 2015;2504:159–67. https://doi.org/10.3141/2504-18.
[54] Nagarajaiah S, Dyke S, Lynch J, Smyth A, Agrawal A, Symans M, et al. Current Directions of Structural Health Monitoring and Control in USA. Adv Sci Technol 2008;56:277–86. https://doi.org/10.4028/www.scientific.net/AST.56.277.
[55] Inaudi D. 11 - Structural health monitoring of bridges: general issues and applications. In: Karbhari VM, Ansari F, editors. Struct. Heal. Monit. Civ. Infrastruct. Syst., Woodhead Publishing; 2009, p. 339–70. https://doi.org/https://doi.org/10.1533/9781845696825.2.339.
[56] Seo J, Phares B, Lu P, Wipf T, Dahlberg J. Bridge rating protocol using ambient trucks through structural health monitoring system. Eng Struct 2013;46:569–80. https://doi.org/10.1016/j.engstruct.2012.08.012.
[57] Deng Y, Phares BM. Automated bridge load rating determination utilizing strain response due to ambient traffic trucks. Eng Struct 2016;117:101–17. https://doi.org/10.1016/j.engstruct.2016.03.004.
[58] Sanayei M, Phelps JE, Sipple JD, Bell ES, Brenner BR. Instrumentation, nondestructive testing, and finite-element model updating for bridge evaluation using strain measurements. J Bridg Eng 2012;17:130–8. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000228.
[59] Habel WR. 14 - Structural health monitoring research in Europe: trends and applications. In: Karbhari VM, Ansari F, editors. Struct. Heal. Monit. Civ. Infrastruct. Syst., Woodhead Publishing; 2009, p. 435–62. https://doi.org/https://doi.org/10.1533/9781845696825.2.435.
[60] Wenzel H, Hiroshi Tanaka. SAMCO Monitoring Glossary. 2006.
[61] Rücker PW, Hille DF, Rohrmann DR. Guideline for Structural Health Monitoring. Berlin: 2006.
[62] Brownjohn JMW. Structural health monitoring of civil infrastructure. Philos Trans R Soc A Math Phys Eng Sci 2007;365:589–622.
[63] Brühwiler, E., Faber-Nielsen, M. H., Isler, A., Lang, T. P., Lüchinger, P. P, J. et al. Fundamentals of the Conservation of Structures. Zurich: 2011.
[64] Lin X, Zhang L, Guo Q, Zhang Y. Dynamic finite element model updating of prestressed concrete continuous box-girder bridge. Earthq Eng Eng Vib 2009;8:399–407.
[65] Zhang QW, Chang T-YP, Chang CC. Finite-element model updating for the Kap Shui Mun cable-stayed bridge. J Bridg Eng 2001;6:285–93.
[66] Li H, Ou J. The state of the art in structural health monitoring of cable-stayed bridges. J Civ Struct Heal Monit 2016;6:43–67. https://doi.org/10.1007/s13349-015-0115-x.
[67] Moreu F, Li X, Li S, Zhang D. Technical specifications of structural health monitoring for highway bridges: New Chinese structural health monitoring code. Front Built Environ 2018;4:10.
[68] Nguyen A, Chan THT, Zhu X. Real world application of SHM in Australia 2019.
[69] Mufti AA, Neale KW. State-of-the-art of FRP and SHM applications in bridge structures in Canada. Compos Polycon, Am Compos Manuf Assoc Tampa, FL USA 2007.
[70] Daum W. Guidelines for structural health monitoring. Handb. Tech. diagnostics, Springer; 2013, p. 539–41.
[71] Chan T, Thambiratnam D. Structural health monitoring in Australia 2011:1–229.
[72] Zhao H, Ding Y, Li A, Ren Z, Yang K. Live-load strain evaluation of the prestressed concrete box-girder bridge using deep learning and clustering. Struct Heal Monit 2020;19:1051–63. https://doi.org/10.1177/1475921719875630.
[73] Duzgun Agdas, M.ASCE1; Jennifer A. Rice MAJRM and IRL, Abstract: Comparison of Visual Inspection and Structural-Health Monitoring As Bridge Condition Assessment Methods Duzgun Agdas, M.ASCE1; Jennifer A. Rice, M.ASCE2; Justin R. Martinez3; and Ivan R. Lasa4 Abstract: J Perform Constr Facil 2016;30:1–10. https://doi.org/10.1061/(ASCE)CF.
[74] Phares B, Lu P, Wipf T, Greimann L, Seo J. Evolution of a Bridge Damage-Detection Algorithm 2004. https://doi.org/10.3141/2331-07.
[75] Phares B, Lu P, Wipf T, Greimann L, Seo J. Field Validation of a Statistical-Based Bridge Damage-Detection Algorithm 2013:1227–38. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000467.
[76] Li S, Sun L. Detectability of Bridge-Structural Damage Based on Fiber-Optic Sensing through Deep-Convolutional Neural Networks. J Bridg Eng 2020;25:04020012. https://doi.org/10.1061/(asce)be.1943-5592.0001531.
[77] Xu G, Kareem A, Shen L. Surrogate Modeling with Sequential Updating: Applications to Bridge Deck–Wave and Bridge Deck–Wind Interactions. J Comput Civ Eng 2020;34:04020023. https://doi.org/10.1061/(asce)cp.1943-5487.0000904.
[78] Akgül F, Frangopol DM. Bridge Rating and Reliability Correlation: Comprehensive Study for Different Bridge Types. J Struct Eng 2004;130:1063–74. https://doi.org/10.1061/(asce)0733-9445(2004)130:7(1063).
[79] Ding Y, Li A. Assessment of bridge expansion joints using long-term displacement measurement under changing environmental conditions. Front Archit Civ Eng China 2011;5:374–80. https://doi.org/10.1007/s11709-011-0122-x.
[80] Miao CQ, Deng Y, Ding YL, Li AQ. Damage alarming for bridge expansion joints using novelty detection technique based on long-term monitoring data. J Cent South Univ 2013;20:226–35. https://doi.org/10.1007/s11771-013-1480-4.
[81] Park S, Ahmad S, Yun C-B, Roh Y. Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp Mech 2006;46:609–18.
[82] Behnia A, Chai HK, Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr Build Mater 2014;65:282–302.
[83] Andreades C, Malfense Fierro GP, Meo M. A nonlinear ultrasonic SHM method for impact damage localisation in composite panels using a sparse array of piezoelectric PZT transducers. Ultrasonics 2020;108:106181. https://doi.org/10.1016/j.ultras.2020.106181.
[84] Ni YQ, Xia HW, Wong KY, Ko JM. In-service condition assessment of bridge deck using long-term monitoring data of strain response. J Bridg Eng 2012;17:876–85. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000321.
[85] Kromanis R, Kripakaran P. SHM of bridges: characterising thermal response and detecting anomaly events using a temperature-based measurement interpretation approach. J Civ Struct Heal Monit 2016;6:237–54. https://doi.org/10.1007/s13349-016-0161-z.
[86] Frangopol DM, Strauss A, Kim S. Bridge Reliability Assessment Based on Monitoring. J Bridg Eng 2008;13:258–70. https://doi.org/10.1061/(asce)1084-0702(2008)13:3(258).
[87] Liu M, Frangopol DM, Kim S. Bridge System Performance Assessment from Structural Health Monitoring: A Case Study. J Struct Eng 2009;135:733–42. https://doi.org/10.1061/(asce)st.1943-541x.0000014.
[88] Cappello C. Theory of Decision Based on Structural Health Monitoring. University of Trento, 2017.
[89] Zhang WH, Qin J, Lu DG, Thöns S, Faber MH. VoI-informed decision-making for SHM system arrangement. Struct Heal Monit 2020. https://doi.org/10.1177/1475921720962736.
[90] Pozzi M, Der Kiureghian A. Assessing the value of information for long-term structural health monitoring. Heal Monit Struct Biol Syst 2011 2011;7984:79842W. https://doi.org/10.1117/12.881918.
[91] Beskhyroun S, Wegner LD, Sparling BF. Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures. Struct Control Heal Monit 2011:n/a-n/a. https://doi.org/10.1002/stc.
[92] European Cooperation in Science and Technology n.d. https://www.cost.eu/.