[1] Toufigh, V., F. Saeid, V. Toufigh, A. Ouria, C. S. Desai, and H. Saadatmanesh, 2014 Laboratory study of soil-CFRP interaction using pull-out test Geomech. Geoengin. 9(3) :208–214. doi: 10.1080/17486025.2013.813650.
[2] Ouria, A., V. Toufigh, C. Desai, V. Toufigh, and H. Saadatmanesh, 2016 Finite element analysis of a CFRP reinforced retaining wall Geomech. Eng. 10(6) :757–774. doi: 10.12989/gae.2016.10.6.757.
[3] Fan, K., S. H. Liu, Y. P. Cheng, and Y. Wang, (2019) Sliding stability analysis of a retaining wall constructed by soilbags Géotechnique Lett. 9(3) :211–217. doi: 10.1680/jgele.19.00002.
[4] Broda, J. et al., 2019 Reclamation of abandoned open mines with innovative meandrically arranged geotextiles Geotext. Geomembranes (November) :0–1. doi: 10.1016/j.geotexmem.2019.11.003.
[5] Lee, S. L., M. A. Mannan, and W. H. Wan Ibrahim, (2019) Shear strength evaluation of composite pavement with geotextile as reinforcement at the interface Geotext. Geomembranes (October) :0–1. doi: 10.1016/j.geotexmem.2019.11.002.
[6] Sommers, A. N., & Viswanadham, B. V. S. 2009. Centrifuge model tests on the behavior of strip footing on geotextile-reinforced slopes. Geotextiles and Geomembranes, 27(6), 497-505.
[7] Goodarzi, S., and Shahnazari, H. 2019. Strength enhancement of geotextile-reinforced carbonate sand. Geotextiles and Geomembranes, 47(2), 128-139.
[8] Naeini, S. A., and Gholampoor, N. 2014. Cyclic behaviour of dry silty sand reinforced with a geotextile. Geotextiles and Geomembranes, 42(6), 611-619.
[9] Latha, G.M., and Somwanshi, A., 2009. Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes, 27(6), pp. 409-422.
[10] Hugher, J.M.O., and Withers, N.J., 1974. Reinforcing of soft cohesive soils with stone columns. Ground engineering, 7(3), pp. 42-49.
[11] Kourner, M., 2005. Designing with Geosynthetics (th ed), Prentice-Hall, New Jersey.
[12] Huang, C.C., and Tatsuoka, F., 1990. Bearing capacity of reinforced horizontal sandy ground. Geotextiles and Geomembranes, 9(1), pp. 51-82.
[13] Adams, M.T., and Collin, J.G., 1997. Large model spread footing load tests on geosynthetic reinforced soil foundations. Journal of Geotechnical and Geoenvironmental Engineering, 123(1), pp. 66-72.
[14] Alawaji, H.A., 2001. Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil. Geotextiles and Geomembranes, 19(2), pp.75-88.
[15] Ghosh, A., Ghosh, A., and Bera, A.K., 2005. Bearing capacity of square footing on pond ash reinforced with jute-geotextile, Geotextiles and Geomembranes, 23(2), pp. 144-173.
[16] Oliaei, M., and Kouzegaran, S., 2017. Efficiency of cellular geosynthetics for foundation reinforcement. Geotextiles and Geomembranes, 45(2), pp. 11-22. doi: 10.1016/j.geotexmem.2016.11.001.
[17] Davarifard, S., and Tafreshi, S. N. M., 2015. Plate Load Tests of Multi-Layered Geocell Reinforced Bed Considering Embedment Depth of Footing. Procedia Earth and Planetary Science, 15, pp. 105-110. doi: 10.1016/j.proeps.2015.08.027.
[18] Kumar, P., and Rajkumar, R., 2012. Effect of geotextile on CBR strength of unpaved road with soft subgrade. Electronic Journal of Geotechnical Engineering, 17(1), pp. 1355-1363.
[19] Chen, Q., Hanandeh, S., Abu-Farsakh, M., and Mohammad, L., 2015. Performance evaluation of full-scale geosynthetic reinforced flexible pavement. Geosynthetics International, 25(1), pp. 26-36.
[20] Cicek, E., E. Guler, and T. Yetimoglu, 2015 Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil Soils Found. 55(4) :661–677. doi: 10.1016/j.sandf.2015.06.001.
[21] Mosallanezhad, M., Hataf N., and Ghahramani, A., 2008. Experimental study of bearing capacity of granular soils, reinforced with innovative grid-anchor system. Geotechnical and Geological Engineering, 26(3), pp. 299-312.
[22] Ouria, A., and Mahmoudi, A., 2018. Laboratory and numerical modeling of strip footing on geotextile-reinforced sand with cement-treated interface. Geotextiles and Geomembranes, 46(1), pp. 29-39
[23] Ouria, A., Emami, S., and Karamzadegan, S. Laboratory Investigation of the Effect of the Cement Treatment of Interface on the Pullout Capacity of Reinforcements, Amirkabir Journal of Civil Engineering, Articles in Press, Accepted Manuscript , Available Online from 23 October 2019, DOI: 10.22060/CEEJ.2019.16191.6149
[24] Toufigh, V., A. Ouria, C. S. Desai, N. Javid, V. Toufigh, and H. Saadatmanesh, 2016 Interface behavior between carbon-fiber polymer and sand J. Test. Eval. 44(1) doi: 10.1520/JTE20140153.
[25] Yetimoglu, T., Jonathan, T.H.Wu., and Saglamer, A., 1994. Bearing capacity of rectangular footings on geogrid-reinforced sand. Journal of Geotechnical Engineering, 120(12), pp. 2083-2099.
[26] Singh, P., and Gill, K., 2012. CBR improvement of clayey soil with Geogrid Reinforcement. International Journal of Emerging Technology and Advanced Engineering, 2(6), pp. 456-462.
[27] Strahler, A. W., Walters, J. J., and Stuedlein, A. W., 2016. Frictional resistance of closely spaced steel reinforcement strips used in MSE walls’, Journal of Geotechnical and Geoenvironmental Engineering, 142(2), p. 04016030.
[28] Broda, J., Franitza, P., Herrmann, U., Helbig, R., Große, A., Grzybowska-Pietras, J., and Rom, M., 2019. Reclamation of abandoned open mines with innovative meandrically arranged geotextiles. Geotextiles and Geomembranes. (November), pp. 0-1. dio: 10.1016/j.geotexmem.2019.11.003.
[29] Fan, K., Liu, S. H., Cheng, Y. P., and Wang, Y., 2019. Sliding stability analysis of a retaining wall constructed by soilbags. Géotechnique Letters, 9(3), pp. 211-217. doi: 10.1680/jgele.19.00002.
[30] Dixon, N., G. Fowmes, and M. Frost, (2017) Global challenges, geosynthetic solutions and counting carbon Geosynth. Int. 24(5) :451–464. doi: 10.1680/jgein.17.00014.
[31] ASTM D 2487-11. 2011 Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). American society for testing materials.
[32] ASTM D 3080-04. 2004 Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, American society for testing materials.
[33] ASTM D 2216-05. 2005 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. American society for testing material.
[34] ASTM C 127-07. 2007 Standard test method for Density, Relative Density (specific gravity), and absorption of Ccoarse Aggregate, American society for testing materials.
[35] ASTM D4595-11. 2011 Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method, American society for testing materials.
[36] ASTM D5321, Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear, ASTM International, West Conshohocken, PA,
[37] ASTM D5261-10(2018), Standard Test Method for Measuring Mass per Unit Area of Geotextiles, ASTM International, West Conshohocken, PA, 2018
[38] Muir Wood, D. 2009. Geotechnical Modelling.
[39] R.K. Dixit, J.N. Mandal, Dimensional analysis and modelling laws for bearing capacity of reinforced and unreinforced soil, Constr. Build. Mater. 7 (1993) 203–205.
[40] Altaee, A., and , Fellenius,B. Physical modeling in sand, Canadian Geotechnical Journal, 1994, 31(3): 420-431, https://doi.org/10.1139/t94-049.
[41] Been, K., and Jefferies, M.G. 1985. A state parameter for sands.Geotechnique, 35: 99-112.
[42] Roscoe, K.H, and, Poorooshasb,H. 1963 fundamental principle of similarity in model test for earth pressure problems. In Proceedings of the 2nd Asian Regional Conference on Soil Mechanics, Bangkok, Thailand. Vol. 1. pp. 134-140 31(3): 420-431.