5- مراجع
[1] Feda, J., 1988. Collapse of loess upon wetting. Engineering geology, 25(2-4), 263-269.
[2] Houston, S. L., Houston, W. N., & Spadola, D. J., 1988. Prediction of field collapse of soils due to wetting. Journal of Geotechnical Engineering, 114(1), 40-58.
[3] Hormdee, D., 2008. Investigation on collapse potential of loess soil. In The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
[4] Lommler, J. C., & Bandini, P., 2015. Characterization of collapsible soils. In IFCEE, 1834-1841.
[5] Lawton, E. C., Fragaszy, R. J., & Hardcastle, J. H. 1989. Collapse of compacted clayey sand. Journal of Geotechnical Engineering, 115(9), 1252-1267.
[6] Tadepalli, R., Rahardjo, H., & Fredlund, D. G., 1992. Measurements of matric suction and volume changes during inundation of collapsible soil. Geotechnical Testing Journal, 15(2), 115-122.
[7] Rollins, K. M., Rollins, R. L., Smith, T. D., & Beckwith, G. H., 1994. Identification and characterization of collapsible gravels. Journal of geotechnical engineering, 120(3), 528-542.
[8] Santagata, M. C., El Howayek, A., Huang, P. T., & Bisnett, R., 2011. Identification and behavior of collapsible soils. Joint Transportation Research Program Technical Rep. Series Rep. SPR-3109, Indiana Dept. of Transportation and Purdue Univ., West Lafayette, IN.
[9] Clemence, S. P., & Finbarr, A. O., 1981. Design considerations for collapsible soils. Journal of Geotechnical and Geoenvironmental Engineering, 107 (ASCE 16106).
[10] Houston, S. L., Houston, W. N., Zapata, C. E., & Lawrence, C., 2001. Geotechnical engineering practice for collapsible soils. In Unsaturated soil concepts and their application in geotechnical practice, 333-355. Springer, Dordrecht.
[11] Cerato, A. B., Miller, G. A., & Hajjat, J. A., 2009. Influence of clod-size and structure on wetting-induced volume change of compacted soil. Journal of geotechnical and geoenvironmental engineering, 135(11), 1620-1628.
[12] Phien-Wej, N., Pientong, T., & Balasubramaniam, A. S., 1992. Collapse and strength characteristics of loess in Thailand. Engineering Geology, 32(1-2), 59-72.
[13] Nouaouria, M. S., Guenfoud, M., & Lafifi, B., 2008. Engineering properties of loess in Algeria. Engineering Geology, 99(1-2), 85-90.
[14] Derbyshire, E., 2012. Genesis and properties of collapsible soils. Journal of Springer Science & Business Media, Vol. 468.
[15] Ryashchenko, T. G., Akulova, V. V., & Erbaeva, M. A., 2008. Loessial soils of priangaria, transbaikalia, Mongolia, and northwestern China. Quaternary International, 179(1), 90-95.
[16] Annual Book of ASTM Standards Designation: D5333-03, 2003. Standard test methods for measurement of collapse potential of soils, Vol. 04.09.
[17] Ouhadi, V. R., & Bakhshalipour, H., 2010. Impact of nanoclays on the behavior properties of collapsible soils. In 9th International Congress on Advances in Civil Engineering. Karadeniz Technical University, Trabzon, Turkey.
[18] Song, L. H., 1986. Pumping subsidence of ground surface in Karst areas. Academia Sinica, Beijing, 15pp.
[19] Lawton, E. C., Fragaszy, R. J., & Hetherington, M. D., 1992. Review of wetting-induced collapse in compacted soil. Journal of geotechnical engineering, 118(9), 1376-1394.
[20] Abbeche, K., Hammoud, F., & Ayadat, T., 2007. Influence of relative density and clay fraction on soils collapse. In Experimental Unsaturated Soil Mechanics (pp. 3-9). Springer, Berlin, Heidelberg.
[21] Basma, A. A., & Tuncer, E. R., 1992. Evaluation and control of collapsible soils. Journal of Geotechnical Engineering, 118(10), 1491-1504.
[22] Alwail, T. A., Ho, C. L., & Fragaszy, R. J., 1994. Collapse mechanism of compacted clayey and silty sands. In Vertical and Horizontal Deformations of Foundations and Embankments (pp. 1435-1446). ASCE.
[23] Ouhadi, V.R., & Goodarzi, A.R., 2005. Impact of solubility of carbonate or sulfate salts and collapsible potential on the formation of sinkholes. Engineering Journal of Tabriz University, Vol. 34, No.3, pp. 1-10.
[24] Sheeler, J. B., 1968. Summarization and comparison of engineering properties of loess in the United States. Highway Research Record, 212, 1-9.
[25] Pells, P., Robertson, A., Jennings, J. E., & Knight, K., 1975. A guide to construction on or with materials exhibiting additional settlement due to Collapse of grain structure.
[26] ASTM, 2017. Annual book of ASTM Standard, Vol. 04.09, Soil and Rock (II);
Geosynthetics, Philadelphia, USA, P.A., pp. 515.
[27] Benchouk, A., Abou-Bekr, N., & Taibi, S., 2013. Potential collapse for a clay soil. International Journal of Emerging Technology and Advanced Engineering, 3, 43-47.
[28] Ouhadi, V. R., Zareie, N., and Bava Pouri, H., 2013. Geotechnical evaluation of impact of Illite mineral on the behaviour of collapsible soils. The Seventh Congress on Civil Engineering, Zahedan, Sistan and Baloochestan University.
[29] Ali, N. A., 2015. Performance of partially replaced collapsible soil, Field study, Alexandria Engineering Journal, Elsevier, Vol. 54, pp. 527-532.
[30] Houston, S.L., Mahmoud, H., and Houston, W.N., 1995. Down-hole Collapse Test System. Journal of Geotech. Engr., ASCE, Vol. 121, No. 4.
[31] Thorel, L., Ferber, V., Caicedo, B., and Khokhar, I.M., 2011. Physical modeling of wetting-induced collapse in embankment base. Geotechnique, Vol. 61, No. 5, pp.409-420.
[32] Cui, Z. D., and Jia, Y.J., 2018. Physical model test of layered soil subsidence considering dual effects of building load and groundwater withdrawl. Arabian Journal of Science and Eng., Vol. 43, pp. 1721-1734.
[33] Sartkaew, S, Khamrat, S., and Fuenkajorn, K., 2019. Physical model simulation of surface subsidence under sub-critical condition. Vol. 19 (5), pp. 234–246.
[34] Yong, R.N., Mohamed, A.M.O., Warkentin, B.P., 1992. Principles of Contaminant Transport in Soils. Elsevier, Holland.
[35] Yong, R.N., Nakano, M., and Pusch, R., 2013. Environmental soil properties and behaviour. CRC, Taylor and Francis. P. 435.