[1] Knauss, J. 1978. Prediction of critical submergence, swirling flow problems at intakes, IAHR Hydraulic Structures Design Manual, 1, 7-11, Netherlands: Balkema Rotterdam.
[2] Rankine, W. J. M. 1858. A Manual of Applied Mechanics, London: R. Griffen.
[3] Kundu, P. 2002. Fluid Mechanics. Academic Press.
[4] Khadem rabe, B. 2017. Numerical and experimental study of air-core vortex in inclined intakes of power plant, PhD Thesis, Department of Water Resources Engineering, Shahid Beheshti University, Tehran. (In Persian)
[5] Sarkardeh, H., Zarrati, A. R., & Roshan, R. 2010. Effect of intake head wall and trash rack on vortices, Journal of Hydraulic Research, 48(1), 108-112.
[6] Hite, J., & Mih, W. 1994. Velocity of Air-Core Vortices at Hydraulic Intakes, Journal of Hydraulic Engineering, 120(3), 284-297.
[7] Uchiyama, T., & Ishiguro, Y. 2016. Study of the interactions between rising air bubbles and vortex core of swirling water flow around vertical axis, Chemical Engineering Science (Elsevier), 142, 137-143.
[8] Wang, Y. K., Jiang, C. B., & Liang, D. F. 2010. Investigation of air-core vortex at hydraulic intakes, Journal of Hydrodynamics, 22(5), 696-701.
[9] Monshizadeh, M., Tahershamsi, A., Rahimzadeh, H., & Sarkardeh, H. 2017. Experimental investigation of dynamics of the air-core vortices and estimating the air entrainment rate at a horizontal intake, Modares Mechanical Engineering, 17(8), 59-67. (in Persian)
[10] Khanarmuei, M. R., Rahimzadeh, H., & Sarkardeh, H. 2014. Investigating the effect of intake withdrawal direction on critical submergence and strength of vortices, Modares Mechanical Engineering, 14(10), 35-42. (In Persian)
[11] Chen, Y., Wu, C., Wang, B., & Du, M. 2012. Three-dimensional Numerical Simulation of Vertical Vortex at Hydraulic Intake. 2012 International Conference on Modern Hydraulic Engineering, 55-60.
[12] Suerich Gulick, F., Gaskin, S. J., Villeneuve, M., Holder, G., & Parkinson, É. 2006. Experimental and Numerical Analysis of Free Surface Vortices at a Hydropower Intake, 7th Int. Conf. Hydroscience and Engineering (ICHE). Philadelphia, USA.
[13] Li, H. F., Chen, H. X., Ma, Z., & Zhou, Y. 2008. Experimental and Numerical Envestigation of Free Surface Vortex, Journal of hydrodynamics, 20(4), 485-491.
[14] Aybar, A. 2012. Computational Modeling of Free Surface Flow in Intake Structures Using Flow 3D Software, Turkey: M.Sc. Thesis in Civil Eng, Middle East Technical University.
[15] Lucino, C., Liscia, S., & Duró, G. 2010. Vortex Detection in Pump Sumps by Means of CFD. XXIV Latin American Cong. Hydraulics Punta Del Este. Uruguay.
[16] Sarkardeh, H., Zarrati, A. R., Jabbari, E., & Marosi, M. 2014. Numerical Simulation and Analysis of Flow in a Reservoir in the Presence of Vortex. Engineering Applications of Computational Fluid Mechanics, 8(4), 598–608.
[17] Bin, J., Xianwu, L., Roger, E. A., & Yulin, W. 2014. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction, Occean engineerind, 8, (4), 656–660.
[18] Khadem-Rabe, B., Ghoreishi-Najafi, S. H., & Sarkardeh, H. 2017. Numerical Simulation of Air-Core Vortex at Intake, Journal of Current Science, 112(11), 435-448.
[19] Khadem-Rabe, B., Ghoreishi-Najafi, S. H., & Sarkardeh, H. 2016. Numerical simulation of anti-vortex devices at water intakes, Journal of Water Management (ICE), 170(3), 1-12.
[20] Sarkardeh, H. 2017. Numerical calculation of air entrainment rates due to intake vortices, Journal of Meccanica, 52(15), 3629–3643.
[21] Overview, P. (n.d.). 2013. Simcenter STAR-CCM+ Product Overview.
[22] Hirt, C., & Nichols, B. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39, 201-225.
[23] Hirt, C. W., & Sicilian, J. M. 1985. A porosity technique for the definition of obstacles in rectangular cell meshes, Proceedings of the 4th International Conference on Ship Hydrodynamics, National Academy of Science, Washington, DC, 1–19.
[24] Schneiderbauer, S., & Krieger, M. 2014. What do the Navier–Stokes equations mean?, European Journal of Physics, 35, 1-24.
[25] Anderson, J. D. 1996. Computational Fluid Dynamics, New York: McGraw-Hill.
[26] Ahn, S. H., Xiao, Y., Wang, Z., Zhou, X., & Luo, Y. 2017. Numerical prediction on the effect of free surface vortex on intake flow characteristics for tidal power station, Renewable Energy, 101, 617-628.
[27] Dean, R.G., & Dalrymple, R.A. 1984. Water Wave Mechanics for Engineers and Scientists, 2, 261-269, Prentice-Hall, Englewood CliVs, NJ: World Scintifice.
[28] Sun, H., & Liu, Y. 2015. Theoretical and experimental study on the vortex at hydraulic intakes. Journal of Hydraulic Research, 53(6), 787–796.
[29] Ning, D. Z., Zang, J., Liu, S. X., Taylor, R. E., Teng, B., & Taylor, P. H. 2009. Free-surface evolution and wave kinematics for nonlinear uni-directional focused wave groups. Ocean Engineering, 36, 1226-1243.
[30] Sarkardeh, H., Zarrati, A, R,. Jabbari, E,. & Tavakkoli, S. 2014. Velocity field in a reservoir in the presence of an air-core vortex, ICE. Proceedings of the Institution of Civil Engineers, 167, 356–364.