[1] Chen, J.S., Wu, C.T., Yoon, S. and You, Y., “A stabilized conforming nodal integration for Galerkin mesh-free methods”, International journal for numerical methods in engineering, 50(2), 2001, pp.435-466.
[2] Liu, G.R., Dai, K.Y. and Nguyen, T.T., “A smoothed finite element method for mechanics problems”, Computational Mechanics, 39(6), 2007, pp.859-877.
[3] Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H. and Lam, K.Y., “A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems”, Computers & structures, 87(1), 2009, pp.14-26.
[4] Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y., “An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids”, Journal of Sound and Vibration, 320(4), 2009, pp.1100-1130.
[5] Liu, G. and Nguyen, T., Smoothed finite element methods, 1st ed, Boca Raton, CRC Press, 2010.
[6] Cui, X.Y., Liu, G.R., Li, G.Y. and Zhang, G.Y., “A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells”, International journal for numerical methods in engineering, 85(8), 2011, pp.958-986.
[7] Liu, G.R., Nguyen‐Xuan, H. and Nguyen‐Thoi, T., “A theoretical study on the smoothed FEM (S‐FEM) models: Properties, accuracy and convergence rates”, International Journal for Numerical Methods in Engineering, 84(10), 2010, pp.1222-1256.
[8] Liu, G.R., Nourbakhshnia, N. and Zhang, Y.W., “A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems”, Engineering Fracture Mechanics, 78(6), 2011, pp.863-876.
[9] Liu, G.R., Chen, L., Nguyen‐Thoi, T., Zeng, K.Y. and Zhang, G.Y., “A novel singular node‐based smoothed finite element method (NS‐FEM) for upper bound solutions of fracture problems”, International Journal for Numerical Methods in Engineering, 83(11), 2010, pp.1466-1497.
[10] Liu, G.R., Nourbakhshnia, N., Chen, L. and Zhang, Y.W., “A novel general formulation for singular stress field using the ES-FEM method for the analysis of mixed-mode cracks”, International Journal of Computational Methods, 7(01), 2010, pp.191-214.
[11] Zhang, Ζ.Β., Wu, S.C., Liu, G.R. and Chen, W.L., “Nonlinear transient heat transfer problems using the meshfree ES-PIM”, International Journal of Nonlinear Sciences and Numerical Simulation, 11(12), 2010, pp.1077-1092.
[12] Wu, S.C., Liu, G.R., Cui, X.Y., Nguyen, T.T. and Zhang, G.Y., “An edge-based smoothed point interpolation method (ES-PIM) for heat transfer analysis of rapid manufacturing system”, International Journal of Heat and Mass Transfer, 53(9), 2010, pp.1938-1950.
[13] He, Z.C., Cheng, A.G., Zhang, G.Y., Zhong, Z.H. and Liu, G.R., “Dispersion error reduction for acoustic problems using the edge‐based smoothed finite element method (ES‐FEM)”, International journal for numerical methods in engineering, 86(11), 2011, pp.1322-1338.
[14] He, Z.C., Liu, G.R., Zhong, Z.H., Zhang, G.Y. and Cheng, A.G., “A coupled ES-FEM/BEM method for fluid–structure interaction problems”, Engineering Analysis with Boundary Elements, 35(1), 2011, pp.140-147.
[15] Zhang, Z.Q. and Liu, G.R., “Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods”, International Journal for Numerical Methods in Engineering, 84(2), 2010, pp.149-178.
[16] Zhang, Z.Q. and Liu, G.R., “An edge‐based smoothed finite element method (ES‐FEM) using 3‐node triangular elements for 3D non‐linear analysis of spatial membrane structures”, International Journal for Numerical Methods in Engineering, 86(2), 2011, pp.135-154.
[17] Nguyen‐Thoi, T., Liu, G.R., Nguyen‐Xuan, H. and Nguyen‐Tran, C., “Adaptive analysis using the node‐based smoothed finite element method (NS‐FEM)”, International Journal for Numerical Methods in Biomedical Engineering, 27(2), 2011, pp.198-218.
[18] Li, Y., Liu, G.R. and Zhang, G.Y., “An adaptive NS/ES-FEM approach for 2D contact problems using triangular elements”, Finite Elements in Analysis and Design, 47(3), 2011, pp.256-275.
[19] Li, E., Liu, G.R., Tan, V. and He, Z.C., “An efficient algorithm for phase change problem in tumor treatment using αFEM”, International Journal of Thermal Sciences, 49(10), 2010, pp.1954-1967.
[20] Craig, R.F., Craig's soil mechanics, 7th ed, CRC Press, 2004