[1] J. Wilson, Sensor Technology Handbook. Chandler, Arizona, USA: Elsevier Ltd, 2005.
[2] P. W. Chen and D. D. L. Chung, “Concrete as a new strain/stress sensor,” Compos. Part B Eng., vol. 27, no. 1, pp. 11–23, 1996.
[3] H. Xiao, H. Li, and J. Ou, “Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam,” Sensors Actuators, A Phys., vol. 167, no. 2, pp. 581–587, 2011.
[4] B. Han and J. Ou, “Embedded piezoresistive cement-based stress/strain sensor,” Sensors Actuators, A Phys., vol. 138, no. 2, pp. 294–298, 2007.
[5] M. Sun, R. J. Y. Liew, M.-H. Zhang, and W. Li, “Development of cement-based strain sensor for health monitoring of ultra high strength concrete,” Constr. Build. Mater., vol. 65, no. 2014, pp. 630–637, 2014.
[6] F. Azhari and N. Banthia, “Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing,” Cem. Concr. Compos., vol. 34, no. 7, pp. 866–873, 2012.
[7] M. Sun, Q. Liu, Z. Li, and Y. Hu, “A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading,” Cem. Concr. Res., vol. 30, no. 10, pp. 1593–1595, 2000.
[8] S. Wen and D. D. L. Chung, “Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars,” Carbon N. Y., vol. 44, no. 8, pp. 1496–1502, 2006.
[9] O. Galao, F. J. Baeza, E. Zornoza, and P. Garcés, “Strain and damage sensing properties on multifunctional cement composites with CNF admixture,” Cem. Concr. Compos., vol. 46, no. 2014, pp. 90–98, 2014.
[10] M. Saafi, “Wireless and embedded carbon nanotube networks for damage detection in concrete structures.,” Nanotechnology, vol. 20, no. 39, p. 395502, 2009.
[11] D.-M. Bontea, D. D. L. Chung, and G. C. Lee, “Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement,” Cem. Concr. Res., vol. 30, no. 4, pp. 651–659, 2000.
[12] S. Wang and D. D. L. Chung, “Self-monitoring of strain and damage by a carbon-carbon composite,” Carbon N. Y., vol. 35, no. 5, pp. 621–630, 1997.
[13] S. Sun, X. Yu, and B. Han, “Sensing Mechanism of Self-Monitoring CNT Cementitious Composite,” J. Test. Eval., vol. 42, no. 1, p. 20120302, 2014.
[14] K. Gopalakrishnan, P. T. Bjorn Birgisson, and and N. O. A.-O. (Eds.), Nanotechnology in Civil Infrastructure A Paradigm Shift. Springer-Verlag Berlin Heidelberg, 2011.
[15] G. Y. Li, P. M. Wang, and X. Zhao, “Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites,” Cem. Concr. Compos., vol. 29, no. 5, pp. 377–382, 2007.
[16] B. Han, S. Ding, and X. Yu, “Intrinsic self-sensing concrete and structures: A review,” Measurement, vol. 59, pp. 110–128, 2015.
[17] S. Wen and D. D. . Chung, “Electric polarization in carbon fiber-reinforced cement,” Cem. Concr. Res., vol. 31, pp. 141–147, 2001.
[18] B. . b Han, X. . Yu, K. . Zhang, E. . Kwon, and J. . d Ou, “Sensing properties of CNT-filled cement-based stress sensors,” J. Civ. Struct. Heal. Monit., vol. 1, no. 1–2, pp. 17–24, 2011.
[19] G. Y. Li, P. M. Wang, and X. Zhao, “Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes,” Carbon N. Y., vol. 43, no. 6, pp. 1239–1245, 2005.
[20] H. Li, H. Xiao, J. Yuan, and J. Ou, “Microstructure of cement mortar with nano-particles,” Compos. Part B Eng., vol. 35, no. 2, pp. 185–189, 2004.
[21] A. Chaipanich, T. Nochaiya, W. Wongkeo, and P. Torkittikul, “Compressive strength and microstructure of carbon nanotubes–Fly ash cement composites,” Mater. Sci. Eng., vol. 4, pp. 1063–1067, 2010.
[22] M. S. Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah, “Highly dispersed carbon nanotube reinforced cement based materials,” Cem. Concr. Res., vol. 40, no. 7, pp. 1052–1059, 2010.
[23] J. Luo, Z. Duan, and H. Li, “The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites,” Phys. Status Solidi Appl. Mater. Sci., vol. 206, no. 12, pp. 2783–2790, 2009.
[24] A. D’Alessandro, M. Rallini, F. Ubertini, A. L. Materazzi, and J. M. Kenny, “Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications,” Cem. Concr. Compos., vol. 65, no. November 2015, pp. 200–213, 2016.
[25] S. P. Shah, M. S. Konsta-Gdoutos, Z. S. Metaxa, and P. Mondal, “Nanoscale modification of cementitious materials,” Nanotechnol. Constr. 3, pp. 125–130, 2009.
[26] B. Han, S. Sun, S. Ding, L. Zhang, X. Yu, and J. Ou, “Review of nanocarbon-engineered multifunctional cementitious composites,” Compos. Part A Appl. Sci. Manuf., vol. 70, pp. 69–81, 2015.
[27] M. Sharifi, “the investigation of the interaction of the surfactants with carbon nanotube structures,” Tarbiat Modares University, 2012.
[28] M. Sharifi and S. Javadian, “The effect of surfactants on the dispersion of carbon nanotubes in aqueous solution(In Persian),” in 3rd Surfactant & Detergent Technology Conference, 2012.
[29] Astm:C192/C192M-13, “Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,” ASTM Int., vol. 4, pp. 1–8, 2013.
[30] ASTM C78, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading),” ASTM Int. West Conshohocken, PA, pp. 12–14, 2012.
[31] M. S. Konsta-Gdoutos and C. A. Aza, “Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures,” Cem. Concr. Compos., vol. 53, pp. 162–169, 2014.
[32] G. Yakovlev, J. Keriené, A. Gailius, and I. Girniené, “Cement Based Foam Concrete Reinforced by Carbon Nanotubes,” Mater. Sci., vol. 12, no. 2, pp. 147–151, 2006.