[1] Alves, B., Angnuureng, D. B., Morand, P., & Almar, R. (2020). A review on coastal erosion and flooding risks and best management practices in West Africa: what has been done and should be done. In Journal of Coastal Conservation (Vol. 24, Issue 3). Springer.
[2] Puplampu, D. A., Iddris, K., Alorbu, V., Otumfuor Asante, J., Laar Takaman, J., & Barimah Owusu, A. (2023). Shoreline Change Analysis of the Eastern Coast of Ghana between 1991 and 2020. Journal of Environmental Geography, 16(1–4), 11–21. https://doi.org/10.14232/jengeo-2023-44339.
[3] Ahmed, N., Howlader, N., Hoque, M. A.-A., & Pradhan, B. (2021). Coastal erosion vulnerability assessment along the eastern coast of Bangladesh using geospatial techniques. Ocean & Coastal Management, 199, 105408. https://doi.org/10.1007/s11852-020-00755-7.
[4] Baig, M. R. I., Ahmad, I. A., Shahfahad, Tayyab, M., & Rahman, A. (2020). Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4), 361–376.
[5] Zollini, S., Dominici, D., Alicandro, M., Cuevas-González, M., Angelats, E., Ribas, F., & Simarro, G. (2023). New Methodology for Shoreline Extraction Using Optical and Radar (SAR) Satellite Imagery. Journal of Marine Science and Engineering, 11(3). https://doi.org/10.3390/jmse11030627.
[6] Rangel-Buitrago, N., Neal, W. J., & de Jonge, V. N. (2020). Risk assessment as tool for coastal erosion management. Ocean and Coastal Management, 186. https://doi.org/10.1016/j.ocecoaman.2020.105099.
[7] Liew, M., Xiao, M., Jones, B. M., Farquharson, L. M., & Romanovsky, V. E. (2020). Prevention and control measures for coastal erosion in northern high-latitude communities: A systematic review based on Alaskan case studies. In Environmental Research Letters (Vol. 15, Issue 9). IOP Publishing Ltd. https://doi.org/10.1088/1748-9326/ab9387.
[8] Fernández-Montblanc, T., Duo, E., & Ciavola, P. (2020). Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean and Coastal Management, 188. https://doi.org/10.1016/j.ocecoaman.2019.105075.
[9] Flor-Blanco, G., Alcántara-Carrió, J., Jackson, D. W. T., Flor, G., & Flores-Soriano, C. (2021). Coastal erosion in NW Spain: Recent patterns under extreme storm wave events. Geomorphology, 387. https://doi.org/10.1016/j.geomorph.2021.107767.
[10] Lemke, L., & Miller, J. K. (2021). Role of storm erosion potential and beach morphology in controlling dune erosion. Journal of Marine Science and Engineering, 9(12). https://doi.org/10.3390/jmse9121428.
[11] Harley, M. D., Masselink, G., Ruiz de Alegría-Arzaburu, A., Valiente, N. G., & Scott, T. (2022). Single extreme storm sequence can offset decades of shoreline retreat projected to result from sea-level rise. Communications Earth and Environment, 3(1). https://doi.org/10.1038/s43247-022-00437-2.
[12] Zheng, P., Gumbira, G., Li, M., van der Zanden, J., van der A, D., van der Werf, J., Chen, X., & Tang, X. (2023). Development, calibration and validation of a phase-averaged model for cross-shore sediment transport and morphodynamics on a barred beach. Continental Shelf Research, 258. https://doi.org/10.1016/j.csr.2023.104989.
[13] Ohenhen, L. O., Shirzaei, M., Ojha, C., & Kirwan, M. L. (2023). Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37853-7.
[14] Toimil, A., Camus, P., Losada, I. J., Le Cozannet, G., Nicholls, R. J., Idier, D., & Maspataud, A. (2020). Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. In Earth-Science Reviews (Vol. 202). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2020.103110.
[15] den Bieman, J. P., van Gent, M. R. A., & van den Boogaard, H. F. P. (2021). Wave overtopping predictions using an advanced machine learning technique. Coastal Engineering, 166. https://doi.org/10.1016/j.coastaleng.2020.103830.
[16] Yin, C., Binh, L. T., Anh, D. T., Mai, S. T., Le, A., Nguyen, V. H., Nguyen, V. C., Tinh, N. X., Tanaka, H., Viet, N. T., Nguyen, L. D., & Duong, T. Q. (2021). Advanced Machine Learning Techniques for Predicting Nha Trang Shorelines. IEEE Access, 9, 98132–98149. https://doi.org/10.1109/ACCESS.2021.3095339.
[17] Bellinghausen, K., Hünicke, B., & Zorita, E. (2023). Short-term prediction of extreme sea-level at the Baltic Sea coast by Random Forests. https://doi.org/10.5194/nhess-2023-21.
[18] Beuzen, T., & Splinter, K. (2020). Machine learning and coastal processes. In Sandy Beach Morphodynamics (pp. 689–710). Elsevier. https://doi.org/10.1016/B978-0-08-102927-5.00028-X.
[19] Goldstein, E. B., Coco, G., & Plant, N. G. (2019). A review of machine learning applications to coastal sediment transport and morphodynamics. In Earth-Science Reviews (Vol. 194, pp. 97–108). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2019.04.022.
[20] Azad, M., & Uddin, M. A. (2022). Prediction of Offshore Wave at East Coast of Malaysia-A Comparative Study. https://doi.org/10.3390/electronics.
[21] Chen, H., Yunus, A. P., Nukapothula, S., & Avtar, R. (2022). Modelling Arctic coastal plain lake depths using machine learning and Google Earth Engine. Physics and Chemistry of the Earth, 126. https://doi.org/10.1016/j.pce.2022.103138.
[22] Luppichini, M., Bini, M., Berton, A., Casarosa, N., Merlino, S., & Paterni, M. (2022). A method based on beach profile analysis for shoreline identification. In Ninth International Symposium “Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques” (pp. 47–60). Firenze University Press. https://doi.org/10.36253/979-12-215-0030-1.05.
[23] Pradeep, J., Shaji, E., Chandran C S, S., H, A., Chandra, S. S. V., Dev, S. G. D., & Babu, D. S. S. (2022). Assessment of coastal variations due to climate change using remote sensing and machine learning techniques: A case study from west coast of India. Estuarine, Coastal and Shelf Science, 275. https://doi.org/10.1016/j.ecss.2022.107968.
[24] Xu, G., Ji, C., Wei, H., Wang, J., & Yuan, P. (2022). A novel ensemble model using artificial neural network for predicting wave-induced forces on coastal bridge decks. Engineering with Computers. https://doi.org/10.1007/s00366-022-01745-z
[25] Senechal, N., Peron, C. and Coco, G., (2023). ON the use of Artificial Neural Networks to Explore Morphological and Hydrodynamic Parameters in Shoreline Dynamics. In Coastal Sediments 2023: The Proceedings of the Coastal Sediments 2023 (pp. 395-400).
[26] Dalinghaus, C., Coco, G. and Higuera, P., (2023). Using Genetic Programming for Ensemble Predictions of Wave Setup. In Coastal Sediments 2023: The Proceedings of the Coastal Sediments 2023 (pp. 1933-1939).
[27] Beuzen, T., Marshall, L., & Splinter, K. D. (2018). A comparison of methods for discretizing continuous variables in Bayesian Networks. Environmental Modelling and Software, 108, 61–66. https://doi.org/10.1016/j.envsoft.2018.07.007.
[28] Beuzen, T., Splinter, K. D., Marshall, L. A., Turner, I. L., Harley, M. D., & Palmsten, M. L. (2018). Bayesian Networks in coastal engineering: Distinguishing descriptive and predictive applications. Coastal Engineering, 135, 16–30. https://doi.org/10.1016/j.coastaleng.2018.01.005.
[29] Zeinali, S., Dehghani, M., & Talebbeydokhti, N. (2021). Artificial neural network for the prediction of shoreline changes in Narrabeen, Australia. Applied Ocean Research, 107. https://doi.org/10.1016/j.apor.2020.102362.
[30] Harley, M., Ibaceta, R., Leaman, C., Splinter, K. and Turner, I., (2023). Data-Driven modeling of coastal storm erosion: Narrabeen beach, Australia. In Coastal Sediments 2023: The Proceedings of the Coastal Sediments 2023 (pp. 314-320). https://doi.org/10.1142/9789811275135_0028.
[31] Turner, I. L., Harley, M. D., Short, A. D., Simmons, J. A., Bracs, M. A., Phillips, M. S., & Splinter, K. D. (2016). A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Scientific Data, 3. https://doi.org/10.1038/sdata.2016.24.
[32] Jaramillo, C., Jara, M. S., González, M., & Medina, R. (2021). A shoreline evolution model for embayed beaches based on cross-shore, planform and rotation equilibrium models. Coastal Engineering, 169.https://doi.org/10.1016/j.coastaleng.2021.103983.
[33] Chataigner, T., Yates, M. L., Le Dantec, N., Harley, M. D., Splinter, K. D., & Goutal, N. (2022). Sensitivity of a one-line longshore shoreline change model to the mean wave direction. Coastal Engineering, 172. https://doi.org/10.1016/j.coastaleng.2021.104025.
[34] ECMWF. 2023. European Centre for Medium-Range Weather Forecasts [Online]. Available: https://www.ecmwf.int/ [Accessed].
[35] AVISO. 2023. AVISO [Online]. Available: https://www.aviso.altimetry.fr/en/home.html [Accessed].
[36] Fine, TL. (1999). Algorithms for Designing Feedforward Networks. Springer, Berlin.
[37] Svozil, D., Kvasnieka, V., & Pospichal, J. (1997). Chemometrics and intelligent laboratory systems Introduction to multi-layer feed-forward neural networks. In Chemometrics and Intelligent Laboratory Systems (Vol. 39).
[38] Bilski, J., Kowalczyk, B., Marchlewska, A., & Zurada, J. M. (2020). Local Levenberg-Marquardt algorithm for learning feedforwad neural networks. Journal of Artificial Intelligence and Soft Computing Research, 10(4), 299-316.