[1] Abdel-Rahman, K., & Achmus, M. (2005, October). Finite element modelling of horizontally loaded monopile foundations for offshore wind energy converters in Germany. In Proceedings of the international symposium on frontiers in offshore geotechnics. Taylor and Francis, Perth (pp. 391-396).
[2] Yan, Y., Yang, Y., Bashir, M., Li, C., & Wang, J. (2022). Dynamic analysis of 10 MW offshore wind turbines with different support structures subjected to earthquake loadings. Renewable Energy, 193, 758-777.
[3] Natarajan, K., & Madabhushi, G. S. (2022). Seismic response of an offshore wind turbine jacket structure with pile foundations. Soil Dynamics and Earthquake Engineering, 162, 107427.
[4] Li, X., Zeng, X., Yu, X., & Wang, X. (2021). Seismic response of a novel hybrid foundation for offshore wind turbine by geotechnical centrifuge modeling. Renewable Energy, 172, 1404-1416.
[5] Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C., & Mikkelsen, K. K. (2015). Optimization of monopiles for offshore wind turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2035), 20140100.
[6] Ramirez, L., Fraile, D., & Brindley, G. (2020). Offshore wind in Europe: Key trends and statistics 2019.
[7] Katsanos, E. I., Thöns, S., & Georgakis, C. Τ. (2016). Wind turbines and seismic hazard: a state‐of‐the‐art review. Wind Energy, 19(11), 2113-2133.
[8] DNV, Design of Offshore Wind Turbine Structures, DNV-OS-J101, Det Norske Veritas (DNV), Oslo, 2014.
[9] IEC, Wind turbines-Part 3, Design Requirements for Offshore Wind Turbines, IEC 614000-3, International Electrotechnical Commission (IEC), 1211, Geneva, 2009, 20 Switzerland.
[10] Zuo H, Bi K, Hao H. Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards. Eng Struct 2017;141:303–15.
[11] Hacıefendioğlu K. Stochastic seismic response analysis of offshore wind turbine including fluid‐structure‐soil interaction. Struct Des Tall Spec Build 2012;21:867–78.
[12] Li C, Hao H, Li H, Bi K. Theoretical modeling and numerical simulation of seismic motions at seafloor. Soil Dyn Earthq Eng 2015;77:220–5.
[13] Mo, R., Kang, H., Li, M., & Zhao, X. (2017). Seismic fragility analysis of monopile offshore wind turbines under different operational conditions. Energies, 10(7), 1037.
[14] Wang, X., Zeng, X., Yang, X., & Li, J. (2018). Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling. Applied energy, 209, 127-139.
[15] Austin, S., & Jerath, S. (2017). Effect of soil-foundation-structure interaction on the seismic response of wind turbines. Ain Shams Engineering Journal, 8(3), 323-331.
[16] Zhao, X., & Maisser, P. (2006). Seismic response analysis of wind turbine towers including soil-structure interaction. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 220(1), 53-61.
[17] Sapountzakis, E. J., Dikaros, I. C., Kampitsis, A. E., & Koroneou, A. D. (2015). Nonlinear response of wind turbines under wind and seismic excitations with soil–structure interaction. Journal of Computational and Nonlinear Dynamics, 10(4), 041007.
[18] Wang, X., Zeng, X., Yang, X., & Li, J. (2019). Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling. Applied energy, 235, 1335-1350.
[19] Yu, H., Zeng, X., Li, B., & Lian, J. (2015). Centrifuge modeling of offshore wind foundations under earthquake loading. Soil Dynamics and Earthquake Engineering, 77, 402-415.
[20] Anastasopoulos, I., & Theofilou, M. (2016). Hybrid foundation for offshore wind turbines: Environmental and seismic loading. Soil dynamics and earthquake engineering, 80, 192-209.
[21] Kim, D. H., Lee, S. G., & Lee, I. K. (2014). Seismic fragility analysis of 5 MW offshore wind turbine. Renewable energy, 65, 250-256.
[22] Zheng, X. Y., Li, H., Rong, W., & Li, W. (2015). Joint earthquake and wave action on the monopile wind turbine foundation: An experimental study. Marine Structures, 44, 125-141.
[23] Asareh, M. A., Schonberg, W., & Volz, J. (2016). Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines. Renewable energy, 86, 49-58.
[24] Witcher, D. (2005). Seismic analysis of wind turbines in the time domain. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 8(1), 81-91.
[25] Shirzadeh, N., "Physical modeling of monopile under lateral load in geotechnical centrifuge", M.Sc. Thesis, University of Tehran. (1393/2014). )In Persian(.
[26] Khodaei, H., "Physical modeling of pile under lateral load in geotechnical centrifuge", M.Sc. Thesis, University of Tehran. (1393/2014). )In Persian(.
[27] Jomehri, F., "Centrifuge modeling of monopile under lateral cyclic load in sand", M.Sc. Thesis, University of Tehran. (1395/2016). )In Persian(.
[28] Shahidikhah, M., "Centrifuge modeling of monopile under cyclic lateral loads", M.Sc. Thesis, University of Tehran. (1396/2017). )In Persian(.
[29] Alamouti, S. D., "analysis and evaluation of dynamic characteristics of offshore monopile supported wind turbines considering experimental pile load tests in sand", PhD. Thesis, University of Tehran. (1397/2018). )In Persian(.
[30] Khamse, A., "Centrifuge modeling of monopile under cyclic lateral loads using load control system", M.Sc. Thesis, University of Tehran. (1397/2018). )In Persian(.
[31] Memary, F., "Centrifuge modeling of monopile under lateral loading in calcareous sand", M.Sc. Thesis, University of Tehran. (1398/2019). )In Persian(.
[32] Malakshah, R. R., "Centrifuge modeling of monopile under lateral loading in calcareous sand", PhD. Thesis, University of Tehran. (1401/2023). )In Persian(.
[33]. Park JJ. Estimation of the Ground Acceleration Amplification of Soil-Pile System in Weathered Soil. Seoul: Yonsei University; 2022. [Ph. D dissertation]
[34]. Kim, H., Kim, D., Lee, Y., & Kim, H. (2020). Effect of soil box boundary conditions on dynamic behavior of model soil in 1 g shaking table test. Applied Sciences, 10(13), 4642.
[35]. Iai, S., Tobita, T., & Nakahara, T. (2005). Generalised scaling relations for dynamic centrifuge tests. Geotechnique, 55(5), 355-362.
[36]. Negro, V., López-Gutiérrez, J. S., Esteban, M. D., Alberdi, P., Imaz, M., & Serraclara, J. M. (2017). Monopiles in offshore wind: Preliminary estimate of main dimensions. Ocean Engineering, 133, 253-261.
[37] Yang, E. K., Choi, J. I., Kwon, S. Y., & Kim, M. M. (2011). Development of dynamic py backbone curves for a single pile in dense sand by 1g shaking table tests. KSCE Journal of Civil Engineering, 15, 813-821.
[38] Lim, H., & Jeong, S. (2018). Simplified py curves under dynamic loading in dry sand. Soil Dynamics and Earthquake Engineering, 113, 101-111.