1. Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor
2. Eberhart, R. and Kennedy, J., 1995, October. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). Ieee.
3. Dorigo, M., Maniezzo, V. and Colorni, A., 1996. Ant system: optimization by a colony of cooperating agents. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 26(1), pp.29-41.
4. Geem, Z.W., Kim, J.H. and Loganathan, G.V., 2001. A new heuristic optimization algorithm: harmony search. simulation, 76(2), pp.60-68.
5. Kaveh, A. and Zolghadr, A., 2018. Meta-heuristic methods for optimization of truss structures with vibration frequency constraints. Acta Mechanica, 229, pp.3971-3992.
6. Rozvany, G.I.N. and Zhou, M., 1991. The COC algorithm, part I: cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering, 89(1-3), pp.281-308.
7. George, I. and Rozvany, N., 1989. Structural Design Via Optimality Criteria: The Prager approach to Structural Optimization.
8. Schmit Jr, L.A. and Miura, H., 1976. Approximation concepts for efficient structural synthesis (No. NASA-CR-2552). NASA.
9. Vanderplaats, G.N. and Salajegheh, E., 1989. New approximation method for stress constraints in structural synthesis. AIAA journal, 27(3), pp.352-358.
10. Fleury, C., 1989. CONLIN: an efficient dual optimizer based on convex approximation concepts. Structural optimization, 1, pp.81-89.
11. Svanberg, K., 1987. The method of moving asymptotes—a new method for structural optimization. International journal for numerical methods in engineering, 24(2), pp.359-373.
12. Rozvany, G., 2000, June. The SIMP method in topology optimization-theoretical background, advantages and new applications. In 8th Symposium on Multidisciplinary Analysis and Optimization (p. 4738).
13. Bendsoe, M.P. and Sigmund, O., 2003. Topology optimization: theory, methods, and applications. Springer Science & Business Media
14. Hassani, B., Khanzadi, M. and Tavakkoli, S.M., 2012. An isogeometrical approach to structural topology optimization by optimality criteria. Structural and multidisciplinary optimization, 45, pp.223-233.
15. Tavakkoli, S.M., Hassani, B. and Ghasemnejad, H., 2013. Isogeometric topology optimization of structures by using MMA. Int J Optim Civil Eng, 3(2), pp.313-26.
16. Dorn, W.S., 1964. Automatic design of optimal structures. Journal de mecanique, 3, pp.25-52.
17. Jiang, Y., Zegard, T., Baker, W.F. and Paulino, G.H., 2018. Form-finding of grid-shells using the ground structure and potential energy methods: a comparative study and assessment. Structural and Multidisciplinary Optimization, 57, pp.1187-1211.
18. Sotiropoulos, S. and Lagaros, N.D., 2020. Topology optimization of framed structures using SAP2000. Procedia Manufacturing, 44, pp.68-75.
19. Miguel, L.F.F. and Miguel, L.F.F., 2012. Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Systems with Applications, 39(10), pp.9458-9467.
20. Kaveh, A. and Khayatazad, M., 2013. Ray optimization for size and shape optimization of truss structures. Computers & Structures, 117, pp.82-94.
21. Cao, H., Qian, X., Chen, Z. and Zhu, H., 2017. Enhanced particle swarm optimization for size and shape optimization of truss structures. Engineering Optimization, 49(11), pp.1939-1956.
22. Millan-Paramo, C. and Abdalla Filho, J.E., 2020. Size and shape optimization of truss structures with natural frequency constraints using modified simulated annealing algorithm. Arabian Journal for Science and Engineering, 45(5), pp.3511-3525.
23. Azizi, M., Aickelin, U., Khorshidi, H.A. and Shishehgarkhaneh, M.B., 2022. Shape and size optimization of truss structures by Chaos game optimization considering frequency constraints. Journal of Advanced Research, 41, pp.89-100.
24. Noii, N., Aghayan, I., Hajirasouliha, I. and Kunt, M.M., 2017. A new hybrid method for size and topology optimization of truss structures using modified ALGA and QPGA. Journal of Civil Engineering and Management, 23(2), pp.252-262.
25. Petersson, J. and Sigmund, O., 1998. Slope constrained topology optimization. International Journal for Numerical Methods in Engineering, 41(8), pp.1417-1434.
26. https://en.wikipedia.org/wiki/Forth_Bridge