1. Monaghan, J. J. (1992). Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30(1), 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
2. Monaghan, J. J. (2012). Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44, 323-346. https://doi.org/10.1146/annurev-fluid-120710-101220
3. Liu, M. B., & Liu, G. R. (2010). Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 17(1), 25-76. https://doi.org/10.1007/s11831-010-9043-2
4. Lee, E. S., Violeau, D., Issa, R., & Ploix, S. (2010). Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. Journal of Hydraulic Research, 48 (Suppl.1), 50-60. https://doi.org/10.1080/00221686.2010.9641269
5. Morris, J. P., Fox, P. J., & Zhu, Y. (1997). Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics, 136(1), 214-226. https://doi.org/10.1006/jcph.1997.5745
6. Diehl, S., Rockefeller, G., Fryer, C. L., Riethmiller, D., & Statler, T. S. (2015). Generating optimal initial conditions for smoothed particle hydrodynamics simulations. arXiv preprint arXiv:1511.04256. https://arxiv.org/abs/1511.04256
7. Belytschko, T., Krongauz, Y., Dolbow, J., & Gerlach, C. (1998). On the completeness of meshfree particle methods. International Journal for Numerical Methods in Engineering, 43(5), 785-819. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5%3C785::AID-NME413%3E3.0.CO;2-R
8. Khayyer, A., Gotoh, H., & Shao, S. D. (2008). Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering, 55(3), 236-250. https://doi.org/10.1016/j.coastaleng.2007.09.005
9. Antuono, M., Colagrossi, A., & Marrone, S. (2012). Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications, 183(12), 2570-2580. https://doi.org/10.1016/j.cpc.2012.06.009
10. Gui, Q., Dong, P., & Shao, S. (2015). Numerical study of PPE source term errors in the incompressible SPH models. International Journal for Numerical Methods in Fluids, 77(6), 358-379. https://doi.org/10.1002/fld.
11. Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., & Shimosako, K. (2014). On enhancement of incompressible SPH method for simulation of violent sloshing flows. Applied Ocean Research, 46, 104-115. https://doi.org/10.1016/j.apor.2014.07.005
12. Oger, G., Marrone, S., Le Touzé, D., & De Leffe, M. (2016). SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. Journal of Computational Physics, 313, 76-98. https://doi.org/10.1016/j.jcp.2016.02.047
13. Sun, P. N., Colagrossi, A., Marrone, S., & Zhang, A. M. (2016). Detection of Lagrangian coherent structures in the SPH framework. Computer Methods in Applied Mechanics and Engineering, 305, 849-868. https://doi.org/10.1016/j.cma.2016.02.012
14. Monaghan, J. J. (1989). On the problem of penetration in particle methods. Journal of Computational Physics, 82(1), 1-15. https://doi.org/10.1016/0021-9991(89)90067-5
15. Monaghan, J. J. (2000). SPH without a tensile instability. Journal of Computational Physics, 159(2), 290-311. https://doi.org/10.1006/jcph.2000.6419
16. Akbari, H. (2019). An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods. Wiley Online Library. https://doi.org/10.1002/fld.4755
17. Pourlak, M., Akbari, H., & Jabbari, E. (2023). Importance of Initial Particle Distribution in Modeling Dam Break Analysis with SPH. KSCE Journal of Civil Engineering, 27(1), 218–232. https://doi.org/10.1007/s12205-022-3408-5.
18. Pourlak, M., Jabbari, E. & Akbari, H., The effect of initial particles distribution in smoothed particle hydrodynamic method in wave generation modeling based on laboratory model. Civil Infrastructure Researches, Accpeted for publication. https://doi.org/10.22091/CER.2023.9003.1451.
19. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). The MIT Press.
20. Zhang G., Chen J., Qia Y., Li J., and Xu Q., “Numerical simulation of landslide generated impulse waves using a 𝛿+-LES-SPH model”, Advances in Water Resources, 151 (2021) 103890.
21. Yeylaghi S., Moa B., Buckham B., Oshkai P., Vasquez J., and Crawford C., “ISPH modelling of landslide generated waves for rigid and deformable slides in Newtonian and non-Newtonian reservoir fluids”, Advances in Water Resources, 107 (2017) 212-232.
22. Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 536, 107–144. https://doi.org/10.1017/S0022112005004508.