[1] Li W., Lin X., Bao D. W. & Xie Y. M. 2022 A review of formwork systems for modern concrete construction. Structures, 38, 52-63.
[2] Aspiotis K., Sotiriadis K., Ntaska A., Macova P., Badogiannis E. & Tsivilis. S. 2021 Durability assessment of self-healing in ordinary Portland cement concrete containing chemical additives. Construction and Building Materials, 305, 124754.
[3] Hassanpour M., Hassanpour. M., Rezaie M., Salajegheh E., Iqbal M. R., Khandaker M. U. & Bradley D. A. 2022 Studies of the mechanical and neutron shielding features of concrete by incorporation of green additive materials: Experimental and numerical study. Radiation Physics and Chemistry, 191, 109846.
[4] Mokhtar M. M., Morsy M., Taha N. A., & Ahmed E. M. 2022 Investigating the mechanical performance of nano additives reinforced high-performance concrete. Construction and Building Materials, 320, 125537.
[5] Zhang W., Zheng Q., Ashour A. & Han B. 2020 Self-healing cement concrete composites for resilient infrastructures: A review. Composites Part B: Engineering, 189, 107892.
[6] Zhang L. V., Nehdi M. L., Suleiman A. R., Mehdizadeh Allaf M, Gan M., Marani A. & Tuyan M. 2021 Crack self-healing in bio-green concrete. Composites, Engineering, 227, 109397.
[7] Algaifi H. A., Abu Bakar S., Alyousef R., Mohd Sam A. R., Wan Ibrahim M. H., Shahidan S., Ibrahim M. & Salami B. A. 2021 Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species. Journal of Materials Research and Technology, 12, 967-981.
[8] Peng C., Wu Q., Shen J., Mo R. & Xu J. 2021 Numerical study on the effect of transverse crack self-healing on the corrosion rate of steel bar in concrete. Journal of Building Engineering, 41, 102767.
[9] Mohan M., Rahul A. V., Van Dam B., Zeidan T., Schutter G. D. & Tittelboom K. V. 2022 Performance criteria, environmental impact and cost assessment for 3D printable concrete mixtures. Resources Conservation and Recycling, 181, 106255.
[10] Dehghani H. & Hamzeh R. 2021 Mechanical Properties Evaluation of Self-Healing Concrete Containing Microorganisms. MCEJ, 21 (1) :61-71.
[11] Ghasemzadeh Mosavi Nejad S. & Ramezani Khajeh Ghiyasi., M. 2020 The influence of Crystalline Admixture on the Self-healing Concrete. Concrete Research, 13(1), 39-51.
[12] Shashank B. S., Kumar K. P. & Nagaraja P. S. 2022 Fracture behavior study of self-healing bacterial concrete. Materials Today: Proceedings, 60(1), 267-274.
[13] Khaudiyal S., Rawat A., Kumar Das S. & Garg N. 2021 Bacterial concrete: A review on self-healing properties in the light of sustainability. Materials Today: Proceedings. 60(1), 136-143.
[14] Tang Y. & Xu J. 2021 Application of microbial precipitation in self-healing concrete: A review on the protection strategies for bacteria. Construction and Building Materials, 306, 124950.
[15] Reddy K. M., Ramesh B. & Macrin. D. 2020 Effect of crystalline admixtures, polymers and fibers on self-healing concrete - a review. Materials Today: Proceedings, 33, 763-770.
[16] Jogi K. P. & Lakshmi T. V. S. 2021 Self-healing concrete based on different bacteria: A review. Materials Today: Proceedings, 43, 1246-1252.
[17] Reddy Y. P. V., Ramesh B. & Prem Kumar L. 2020 Influence of bacteria in self-healing of concrete - a review. Materials Today: Proceedings, 33, 4212-4218.
[18] Sri Durga C. S., Ruben N., Rama Chand M. S., Indira M. & Venkatesh C. 2021 Comprehensive microbiological studies on screening bacteria for self-healing concrete. Materialia, 15, 101051.
[19] Sohail M. G., Disi Z. A., Zouari N., Al Nuaimi N., Kahraman R., Gencturk B., Rodrigues D. F. & Yildirim Y. 2022 Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil. Construction and Building Materials, 328, 126943.
[20] Feng F., Chen B., Sun W. & Wang Y. 2021 Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization, Construction and Building Materials, 280, 122460.
[21] Su Y., Zheng T. & Qian C. 2021 Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete. Construction and Building Materials, 273, 121740.
[22] Pradesh H. 2012 Application of Nanotechnology in Building Materials. International Journal of Engineering Research and Applications (IJERA), 2, 1077-1082.
[23] Li H., Hu L., Song D. & Al-Tabbaa A. 2014 Subsurface transport behavior of micronano bubbles and potential applications for groundwater remediation. International journal of environmental research and public health. 11(1), 473-486.
[24] Yuan H., Zhang Q., Hu X., Wu M., Zhao Y., Feng Y. & Shen D. 2022 Application of zeolite as a bacterial carrier in the self-healing of cement mortar cracks. Construction and Building Materials, 331, 127324.
[25] Ansari A., Siddiqui V., Khan M. & Akram K. 2020 Effect of self-healing on zeolite-immobilized bacterial cementitious mortar composites. In Woodhead Publishing Series in Composites Science and Engineering, Self-Healing Composite Materials, Woodhead Publishing, 239-257.
[26] Bhaskar S., Khandaker M., Hossain A., Lachemi M., Wolfaardt G. & Kroukamp M. 2017 Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cement and Concrete Composites, 82, 23-33.
[27] Hosseini Balam N., Mostofinejad D. & Eftekhar M. 2017 Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials, 145, 107-116.
[28] Mirshahmohammad M., Rahmani H., Maleki-Kakelar M. & Bahari A. 2022 Effect of sustained service loads on the self-healing and corrosion of bacterial concretes. Construction and Building Materials, 322, 126423.
[29] Cuzman O., Rescic S., Richter K., Wittig L. & Tiano P. 2015 Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. Journal of Biotechnology, 214, 49-56.
[30] Hadi S., Abbas H., Almajed A., Binyahya A. & Al-Salloum Y. 2022 Biocementation by Sporosarcina pasteurii ATCC6453 under simulated conditions in sand columns. Journal of Materials Research and Technology, 18, 4375-4384.
[31] Izadifard R. & Abdi Moghadam M. 2020 Evaluation of various content of zeolite on the mechanical and durability properties of concrete at high temperatures. Amirkabir Journal of Civil Engineering, 52(9), 2321-2338.
[32] Esfahani F., Shokri M., Ghorbankhani A H. & Katebi A. 2019 The effect of changes in water-cement ratio and curing age on the self-healing behavior of concrete containing zeolite, Civil Engineering, Architecture and Urban Development Iran university of Science and Technology, Tehran, Iran.
[33] Sajedi S. & Azhdarizadeh M. 2021 Evaluation of natural zeolite effect on the mechanical properties of concrete containing coarse masonry recycled aggregates, Amirkabir Journal of Civil Engineering, 53(4), 1671-1686.
[34] Sreeharsha, N., & Ramana, K. V. 2016. Study on the strength characteristics of concrete with partial replacement of cement by zeolite and metakaolin. International journal of innovative research in science, engineering and technology, 5(12), 20363- 20371.
[35] Feng J., Dong H., Wang R. & Su Y. A. 2020 Novel capsule by poly (ethylene glycol) granulation for self-healing concrete. Cement and Concrete Research, 133, 106053.
[36] Lv L., Guo P., Liu G., Han N. & Xing F. 2020 Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive. Cement and Concrete Composites, 105, 103445.
[37] Pourfallahi M., Nohegoo-Shahvari A. & Salimizadeh M. 2020 Effect of direct addition of two different bacteria in concrete as self-healing agent. Structures, 28, 2646-2660.
[38] Christiansen G. 1986 General microbiology, seventh edition: by Hans G. Schlegel, Cambridge University Press, Cambridge.
[39] Zolghadri A., Ahmadi B. & Taherkhani H. 2022 Influence of natural zeolite on fresh properties, compressive strength, flexural strength, abrasion resistance, Cantabro-loss and microstructure of self-consolidating concrete. Construction and Building Materials, 334, 127440.
[40] Durga P. & Singh R. N. 2017 Climatic, Pathogenic and host conditions for successful induction of Ustilaginoidea virens causing false smut of rice. Indian Journal of Ecology, 44(5), 407-411.
[41] Reddy N. R., Tetzloff R. C., Solomon H. M. & Larkin J. W. 2006 Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperatures. Innovative Food Science & Emerging Technologies, 7(3), 169-175.
[42] ACI committee 211, ACI 211. 1-91. 2002 Standard practice for selecting proportions for normal, heavy weight, and mass concrete, formington Hills, MI, USA.
[43] BS EN 12390-3: 2019. Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standards Institution, London.
[44] ASTM C618, standard test method for Compressive strength of cylindrical compressive specimen, ASTM international, west Conshohocken, PA.
[45]احمدی ج, عزیزی ح, کوهی م. 1394 بررسی تأثیر زئولیت در عیارهای مختلف سیمان بر روی مقاومت و نفوذ پذیری بتن, تحقیقات بتن, 8(2) 5-18.
[46] Pei R., Liu J., Wang S., Yang M.2013 Use of bacterial cell
walls to improve the mechanical performance of concrete, Cement and Concrete Composites, 39, 122-130.
[47] ASTM C642. 2006 Standard test method for density, absorption, and voids in hardened concrete, ASTM international, west Conshohocken, PA.
[48] BS EN 12390, Testing hardened concrete Part 122, Method for determination of water absorption.
[49] ISI 7031. 1998 Concrete hardened-determination of depth of penetration of water under pressure, Ed, 1998.
[50] BS EN 12390-8. 2009 Depth of penetration of water.
[51] ASTM C 597 – 02 Standard Test Method for Pulse Velocity Through Concrete.