منابع
[1] F. MiarNaeimi, G. Azizyan, M. Rashki, Reliability sensitivity analysis method based on subset simulation hybrid techniques, Appl. Math. Model. 75 (2019) 607–626.
[2] A. Abdollahi, M.A. Moghaddam, S.A.H. Monfared, M. Rashki, Y. Li, Subset simulation method including fitness-based seed selection for reliability analysis, Eng. Comput. (2020) 1–17.
[3] J. Zhang, M. Xiao, L. Gao, A new method for reliability analysis of structures with mixed random and convex variables, Appl. Math. Model. 70 (2019) 206–220.
[4] P. Hosseini, S.H. Ghasemi, M. Jalayer, A.S. Nowak, Performance-based reliability analysis of bridge pier subjected to vehicular collision: Extremity and failure, Eng. Fail. Anal. 106 (2019) 104176.
[5] T. Zhang, Robust reliability-based optimization with a moment method for hydraulic pump sealing design, Struct. Multidiscip. Optim. 58 (2018) 1737–1750.
[6] M. Bagheri, M. Miri, N. Shabakhty, Fuzzy time dependent structural reliability analysis using alpha level set optimization method based on genetic algorithm, J. Intell. Fuzzy Syst. 32 (2017) 4173–4182.
[7] M. Rashki, M. Miri, M.A. Moghaddam, A new efficient simulation method to approximate the probability of failure and most probable point, Struct. Saf. 39 (2012) 22–29.
[8] R.E. Melchers, Importance sampling in structural systems, Struct. Saf. 6 (1989) 3–10.
[9] S.-K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Eng. Mech. 16 (2001) 263–277.
[10] P.S. Koutsourelakis, H.J. Pradlwarter, G.I. Schuëller, Reliability of structures in high dimensions, part I: Algorithms and applications, Probabilistic Eng. Mech. 19 (2004) 409–417. https://doi.org/10.1016/j.probengmech.2004.05.001.
[11] A.M. Hasofer, N.C. Lind, Exact and invariant second-moment code format, J. Eng. Mech. Div. 100 (1974) 111–121.
[12] R. Rackwitz, B. Flessler, Structural reliability under combined random load sequences, Comput. Struct. 9 (1978) 489–494.
[13] X. Chen, N.C. Lind, Fast probability integration by three-parameter normal tail approximation, Struct. Saf. 1 (1982) 269–276.
[14] Y.-G. Zhao, T. Ono, Moment methods for structural reliability, Struct. Saf. 23 (2001) 47–75.
[15] R. Chowdhury, B.N. Rao, Structural failure probability estimation using HDMR and FFT, Electron J Struct Eng. 8 (2008) 67–76.
[16] D. Wei, S. Rahman, A multi-point univariate decomposition method for structural reliability analysis, Int. J. Press. Vessel. Pip. 87 (2010) 220–229.
[17] D. Yang, Chaos control for numerical instability of first order reliability method, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 3131–3141.
[18] M. Jirgl, Z. Bradac, K. Stibor, M. Havlikova, Reliability analysis of systems with a complex structure using Monte Carlo approach, IFAC Proc. Vol. 46 (2013) 461–466.
[19] D.-Q. Li, F.-P. Zhang, Z.-J. Cao, W. Zhou, K.-K. Phoon, C.-B. Zhou, Efficient reliability updating of slope stability by reweighting failure samples generated by Monte Carlo simulation, Comput. Geotech. 69 (2015) 588–600.
[20] B. Xu, L. Zhao, W. Li, J. He, Y.M. Xie, Dynamic response reliability based topological optimization of continuum structures involving multi-phase materials, Compos. Struct. 149 (2016) 134–144.
[21] X.-Y. Zhou, P.D. Gosling, Z. Ullah, L. Kaczmarczyk, C.J. Pearce, Stochastic multi-scale finite element based reliability analysis for laminated composite structures, Appl. Math. Model. 45 (2017) 457–473.
[22] C. Li, S. Mahadevan, An efficient modularized sample-based method to estimate the first-order Sobol׳ index, Reliab. Eng. Syst. Saf. 153 (2016) 110–121.
]23[ ف. میارنعیمی, غ. عزیزیان, م. راشکی, بهینهسازی سازههای هیدرولیکی بر مبنای قابلیت اطمینان با استفاده از الگوریتمی نو, 1398.
[24] A.S. Nowak, K.R. Collins, Reliability of structures, CRC Press, 2012.
[25] M. Rashki, Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability, Appl. Math. Model. 60 (2018) 220–234.
[26] N. Metropolis, S. Ulam, The monte carlo method, J. Am. Stat. Assoc. 44 (1949) 335–341.
[27] N.S. Hamzehkolaei, M. Miri, M. Rashki, An enhanced simulation-based design method coupled with meta-heuristic search algorithm for accurate reliability-based design optimization, Eng. Comput. 32 (2016) 477–495.
[28] X. Li, Z. Chen, W. Ming, H. Qiu, J. Ma, W. He, An efficient moving optimal radial sampling method for reliability-based design optimization, Int. J. Performability Eng. 13 (2017) 864–877. https://doi.org/10.23940/ijpe.17.06.p8.864877.
[29] V. Dubourg, B. Sudret, Meta-model-based importance sampling for reliability sensitivity analysis, Struct. Saf. 49 (2014) 27–36.
[30] M.A. Shayanfar, M.A. Barkhordari, M.A. Roudak, Locating design point in structural reliability analysis by introduction of a control parameter and moving limited regions, Int. J. Mech. Sci. 126 (2017) 196–202. https://doi.org/10.1016/j.ijmecsci.2017.04.003.
[31] H.-S. Li, Z.-J. Cao, Matlab codes of Subset Simulation for reliability analysis and structural optimization, Struct. Multidiscip. Optim. 54 (2016) 391–410.
[32] T.M. Aljohani, M.J. Beshir, Matlab code to assess the reliability of the smart power distribution system using monte carlo simulation, J. Power Energy Eng. 5 (2017) 30–44.
[33] B. Keshtegar, S. Chakraborty, A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis, Appl. Math. Model. 53 (2018) 319–332.
[34] X. Huang, Y. Li, Y. Zhang, X. Zhang, A new direct second-order reliability analysis method, Appl. Math. Model. 55 (2018) 68–80.
[35] B.S. Dhillon, Reliability, quality, and safety for engineers, CRC Press, 2004.
[36] B. Keshtegar, O. Kisi, M5 model tree and Monte Carlo simulation for efficient structural reliability analysis, Appl. Math. Model. 48 (2017) 899–910.
[37] S.K. Au, J. Ching, J.L. Beck, Application of subset simulation methods to reliability benchmark problems, Struct. Saf. 29 (2007) 183–193.
[38] B. Keshtegar, O. Kisi, RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis, Reliab. Eng. Syst. Saf. 180 (2018) 49–61.