Optimization of P-nitrophenol-Contaminated Water by Non-thermal Plasma Technology and Ozonation by Response Surface Method

Document Type : Original Research

Authors
1 Master's student of Noshirvani University of Technology, Babol
2 Babol Noshirvani University of Technology
Abstract
Industrial progress has ushered in the production of a diverse array of pollutants, encompassing both organic and non-biodegradable substances, such as hydrocarbon compounds derived from petroleum. As the discernible environmental ramifications of these pollutants continue to escalate, the quest for efficacious methodologies for wastewater remediation assumes paramount importance. Among the emergent technologies, plasma technology has garnered considerable acclaim due to its capacity to obliterate a myriad of pollutants. Plasma, which ensues from the application of high voltage to either a gaseous or liquid medium, engenders profoundly reactive species capable of dismantling intricate organic compounds. Similarly, ozone, an exceedingly potent oxidizing agent, has long commanded recognition for its aptitude in the degradation of pollutants. Its robust oxidative attributes render it an invaluable instrument in the realm of wastewater treatment. Ozone treatment entails the infusion of ozone gas into the contaminated aqueous medium, whereupon it engages pollutants in a transformative reaction, rendering them into less deleterious byproducts. By amalgamating the ozonation process with plasma technology, we can harness the merits of both modalities and achieve synergistic effects. This hybridized approach proffers several advantages vis-à-vis individual treatment methodologies, including augmented pollutant removal efficiency, diminished treatment duration, and amplified energy efficiency. The plasma-ozonation process exploits plasma's propensity for the generation of reactive species, capable of reacting with the organic constituents in wastewater. The ensuing ozonation phase augments the degradation of these constituents, engendering a more efficacious and comprehensive removal process. Prior investigations have scrutinized the efficacy of ozone and plasma in isolation for the eradication of p-nitrophenol, a ubiquitous organic pollutant encountered in industrial wastewater. These inquiries have methodically examined various parameters to ascertain their influence on pollutant removal efficiency. Factors such as applied voltage, ozone dosage, initial pH, reaction duration, and initial solution concentration have been subjected to meticulous scrutiny to optimize the treatment regimen. In the present study, we have devised an innovative mathematical model to probe the interplay between these two independent variables: plasma technology and ozonation. The model incorporates a quadratic equation and employs analysis of variance (ANOVA) to gauge the significance of each variable and discern the optimal conditions for pollutant removal. Through scrutiny of the model, we have ascertained that the pinnacle of removal efficiency, surpassing 95%, materializes under specific parameters. These parameters encompass an applied voltage of 14 kV, an oxygen flow rate of 6 L/min, an initial pH of 10, a reaction duration of 6 minutes, and an initial concentration of 200 mg/L. These revelations offer valuable insights into the operational parameters that yield superlative results for pollutant removal within the context of the plasma-ozonation process. The efficacious integration of ozone and plasma technologies in wastewater treatment proffers a promising panacea for the elimination of p-nitrophenol pollutants and sundry other organic constituents. By fine-tuning the process parameters in alignment with the model's recommendations, we can attain exceptional levels of pollutant elimination whilst concurrently minimizing energy consumption and treatment duration. This research significantly contributes to the perennial endeavors aimed at fashioning sustainable and efficient remedies for industrial wastewater treatment, endowing valuable perspectives for their future deployment and widescale application in industrial settings.





Keywords

Subjects


1. Van NTT, Phan AN, Cuong VC, Van NTT, Thanh HG-T, Khai NQ, et al. Enhanced heterogeneous Fenton degradation of p-nitrophenol by Fe3O4 nanoparticles decorated cellulose aerogel from banana stem. Environ Technol Innov. 2023 May;30:103041. 1. Van NTT, Phan AN, Cuong VC, Van NTT, Thanh HG-T, Khai NQ, et al. Enhanced heterogeneous Fenton degradation of p-nitrophenol by Fe3O4 nanoparticles decorated cellulose aerogel from banana stem. Environ Technol Innov. 2023 May;30:103041.
2. Zhao B, Mele G, Pio I, Li J, Palmisano L, Vasapollo G. Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J Hazard Mater. 2010 Apr 15;176(1–3):569–74.
3. Gemini VL, Gallego A, De Oliveira VM, Gomez CE, Manfio GP, Korol SE. Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. Int Biodeterior Biodegrad. 2005;55(2):103–8.
4. Khan D, Kuntail J, Sinha I. Mechanism of phenol and p-nitrophenol adsorption on kaolinite surface in aqueous medium: A molecular dynamics study. J Mol Graph Model [Internet]. 2022 Nov 1 [cited 2023 May 20];116:108251. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1093326322001309
5. Essam T, Aly Amin M, El Tayeb O, Mattiasson B, Guieysse B. Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res [Internet]. 2007 Apr;41(8):1697–704. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043135407000358
6. Yan X, Yi C, Wang Y, Cao W, Mao D, Ou Q, et al. Multi-catalysis of nano-zinc oxide for bisphenol A degradation in a dielectric barrier discharge plasma system: Effect and mechanism. Sep Purif Technol. 2020 Jan 16;231:115897.
7. Sarkar P, Dey A. 4-Nitrophenol biodegradation by an isolated and characterized microbial consortium and statistical optimization of physicochemical parameters by Taguchi Methodology. J Environ Chem Eng. 2020 Oct 1;8(5):104347.
8. Zhao C, Xue L, Zhou Y, Zhang Y, Huang K. A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol. J Hazard Mater. 2021 May 5;409:124473.
9. Farzinfar B, Qaderi F. Synergistic degradation of aqueous p-nitrophenol using DBD plasma combined with ZnO photocatalyst. Process Saf Environ Prot [Internet]. 2022 Dec;168(August):907–17. Available from: https://doi.org/10.1016/j.psep.2022.10.060
10. Azerrad SP, Isaacs M, Dosoretz CG. Integrated treatment of reverse osmosis brines coupling electrocoagulation with advanced oxidation processes. Chem Eng J [Internet]. 2019 Jan 15 [cited 2023 May 20];356:771–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894718317856
11. Kaplan A, Mamane H, Lester Y, Avisar D. Trace Organic Compound Removal from Wastewater Reverse-Osmosis Concentrate by Advanced Oxidation Processes with UV/O3/H2O2. Materials (Basel) [Internet]. 2020 Jun 19 [cited 2023 May 20];13(12):2785. Available from: https://www.mdpi.com/1996-1944/13/12/2785/htm
12. Giannoulia S, Triantaphyllidou IE, Tekerlekopoulou AG, Aggelopoulos CA. Mechanisms of Individual and Simultaneous Adsorption of Antibiotics and Dyes onto Halloysite Nanoclay and Regeneration of Saturated Adsorbent via Cold Plasma Bubbling. Nanomaterials [Internet]. 2023 Jan 1 [cited 2023 May 20];13(2):341. Available from: https://www.mdpi.com/2079-4991/13/2/341/htm
13. Deng Y, Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollut Reports [Internet]. 2015 Sep 18 [cited 2023 May 20];1(3):167–76. Available from: https://link.springer.com/article/10.1007/s40726-015-0015-z
14. Iakovides IC, Michael-Kordatou I, Moreira NFF, Ribeiro AR, Fernandes T, Pereira MFR, et al. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Res [Internet]. 2019 Aug;159:333–47. Available from: https://doi.org/10.1016/j.watres.2019.05.025
15. Hou X, Qiu Y, Yuan E, Li F, Li Z, Ji S, et al. Promotion on light olefins production through modulating the reaction pathways for n-pentane catalytic cracking over ZSM-5 based catalysts. Appl Catal A Gen. 2017 Aug 5;543:51–60.
16. Meijide J, Rosales E, Pazos M, Sanromán MA. p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design. Chemosphere. 2017 Oct 1;185:726–36.
17. Martins RC, Rossi AF, Quinta-Ferreira RM. Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. J Hazard Mater. 2010 Aug 15;180(1–3):716–21.
18. Lin J, Hu H, Gao N, Ye J, Chen Y, Ou H. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant. J Water Process Eng [Internet]. 2020 Feb;33(October 2019):101010. Available from: https://doi.org/10.1016/j.jwpe.2019.101010
19. Yang T, Peng J, Zheng Y, He X, Hou Y, Wu L, et al. Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Appl Catal B Environ [Internet]. 2018 Feb 1 [cited 2023 Apr 24];221:223–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926337317308640
20. Shang K, Li W, Wang X, Lu N, Jiang N, Li J, et al. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep Purif Technol. 2019 Jul 1;218:106–12.
21. Hama Aziz KH, Mahyar A, Miessner H, Mueller S, Kalass D, Moeller D, et al. Application of a planar falling film reactor for decomposition and mineralization of methylene blue in the aqueous media via ozonation, Fenton, photocatalysis and non-thermal plasma: A comparative study. Process Saf Environ Prot. 2018 Jan 1;113:319–29.
22. Yu Q, Gao Y, Tang X, Yi H, Zhang R, Zhao S, et al. Removal of NO from flue gas over HZSM-5 by a cycling adsorption-plasma process. Catal Commun [Internet]. 2018;110(December 2017):18–22. Available from: https://doi.org/10.1016/j.catcom.2018.02.025
23. Liu Y, Wang C, Huang K, Miruka AC, Dong A, Guo Y, et al. Degradation of glucocorticoids in water by dielectric barrier discharge and dielectric barrier discharge combined with calcium peroxide: performance comparison and synergistic effects. J Chem Technol Biotechnol. 2019;94(11):3606–17.
24. Xin YY, Zhou L, Ma K ke, Lee J, Qazi HIA, Li HP, et al. Removal of bromoamine acid in dye wastewater by gas-liquid plasma: The role of ozone and hydroxyl radical. J Water Process Eng. 2020 Oct 1;37:101457.
25. Shang K, Wang X, Li J, Wang H, Lu N, Jiang N, et al. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chem Eng J [Internet]. 2017 Mar [cited 2022 Jun 11];311:378–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894716316655
26. Trinh QH, Mok YS. Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds. Korean J Chem Eng [Internet]. 2016 Mar 20 [cited 2023 May 20];33(3):735–48. Available from: https://link.springer.com/article/10.1007/s11814-015-0300-y
27. Zhao C, Xue L, Zhou Y, Zhang Y, Huang K. A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol. J Hazard Mater [Internet]. 2021 May 5 [cited 2022 Aug 24];409. Available from: https://pubmed.ncbi.nlm.nih.gov/33191026/
28. Wang B, Zhang H, Wang F, Xiong X, Tian K, Sun Y, et al. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts [Internet]. 2019 Mar 5;9(3):241. Available from: https://www.mdpi.com/2073-4344/9/3/241
29. Kuosa M, Kallas J, Häkkinen A. Ozonation of p-nitrophenol at different pH values of water and the influence of radicals at acidic conditions. J Environ Chem Eng. 2015 Mar 1;3(1):325–32.
30. Bradu C, Magureanu M, Parvulescu VI. Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system. J Hazard Mater [Internet]. 2017 Aug;336:52–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304389417302996
31. Dobrin D, Magureanu M, Bradu C, Mandache NB, Ionita P, Parvulescu VI. Degradation of methylparaben in water by corona plasma coupled with ozonation. Environ Sci Pollut Res [Internet]. 2014 Nov 8;21(21):12190–7. Available from: http://link.springer.com/10.1007/s11356-014-2964-y
32. SHANG K, LI J, MORENT R. Hybrid electric discharge plasma technologies for water decontamination: a short review. Plasma Sci Technol [Internet]. 2019 Apr;21(4):043001. Available from: https://iopscience.iop.org/article/10.1088/2058-6272/aafbc6
33. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, et al. Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J [Internet]. 2014 Jan 15 [cited 2022 Jun 11];236:348–68. Available from: http://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=NART67449527
34. Shang K, Li W, Wang X, Lu N, Jiang N, Li J, et al. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep Purif Technol [Internet]. 2019;106–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1383586619300772
35. Mirzaei A, Yerushalmi L, Chen Z, Haghighat F. Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C 3 N 4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J Hazard Mater [Internet]. 2018 Oct 5 [cited 2022 Aug 24];359:516–26. Available from: https://pubmed.ncbi.nlm.nih.gov/30086522/
36. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta [Internet]. 2008 Sep 15;76(5):965–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0039914008004050
37. Tamadoni A, Qaderi F. Optimization of Soil Remediation by Ozonation for PAHs Contaminated Soils. Ozone Sci Eng [Internet]. 2019 Sep 3 [cited 2022 Jun 11];41(5):454–72. Available from: https://www.tandfonline.com/doi/abs/10.1080/01919512.2019.1615865
38. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, et al. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Appl Catal B Environ. 2016 Feb 1;181:371–8.
39. Zhang W, Li G, Wang W, Qin Y, An T, Xiao X, et al. Enhanced photocatalytic mechanism of Ag3PO4 nano-sheets using MS2 (M = Mo, W)/rGO hybrids as co-catalysts for 4-nitrophenol degradation in water. Appl Catal B Environ. 2018 Sep 15;232:11–8.
40. Guo H, Jiang N, Wang H, Shang K, Lu N, Li J, et al. Pulsed discharge plasma induced WO3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway. Chemosphere [Internet]. 2019 Sep 1 [cited 2023 Apr 24];230:190–200. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653519309075
41. Wang TC, Lu N, An JT, Zhao Y, Li J, Wu Y. Multi-tube parallel surface discharge plasma reactor for wastewater treatment. Sep Purif Technol. 2012 Oct 24;100:9–14.
42. Ansari M, Hossein Mahvi A, Hossein Salmani M, Sharifian M, Fallahzadeh H, Hassan Ehrampoush M. Dielectric barrier discharge plasma combined with nano catalyst for aqueous amoxicillin removal: Performance modeling, kinetics and optimization study, energy yield, degradation pathway, and toxicity. Sep Purif Technol. 2020;251(June).
43. Kuosa M, Kallas J, Häkkinen A. Ozonation of p-nitrophenol at different pH values of water and the influence of radicals at acidic conditions. J Environ Chem Eng [Internet]. 2015 Mar;3(1):325–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213343714002309
44. Diao E, Hou H, Dong H. Ozonolysis mechanism and influencing factors of aflatoxin B1: A review. Trends Food Sci Technol [Internet]. 2013 Sep;33(1):21–6. Available from: http://dx.doi.org/10.1016/j.tifs.2013.06.002
45. Isikber AA, Athanassiou CG. The use of ozone gas for the control of insects and micro-organisms in stored products. J Stored Prod Res [Internet]. 2015 Oct;64:139–45. Available from: http://dx.doi.org/10.1016/j.jspr.2014.06.006
46. Hosseinzadeh, Ahmad AAN, , Ali Asghar Navaei , John L. Zhou , Ali Altaee Navid Ramezanian AD, , Teng Bao and MY. Improving Formaldehyde Removal from Water and Wastewater by Fenton, Photo-Fenton and Ozonation/Fenton Processes through Optimization and Modeling. MDPI. 2021;27:19.
47. Qiu C, Yuan S, Li X, Wang H, Bakheet B, Komarneni S, et al. Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode. J Hazard Mater [Internet]. 2014 Sep;280:644–53. Available from: http://dx.doi.org/10.1016/j.jhazmat.2014.09.00
2. Zhao B, Mele G, Pio I, Li J, Palmisano L, Vasapollo G. Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J Hazard Mater. 2010 Apr 15;176(1–3):569–74.
3. Gemini VL, Gallego A, De Oliveira VM, Gomez CE, Manfio GP, Korol SE. Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. Int Biodeterior Biodegrad. 2005;55(2):103–8.
4. Khan D, Kuntail J, Sinha I. Mechanism of phenol and p-nitrophenol adsorption on kaolinite surface in aqueous medium: A molecular dynamics study. J Mol Graph Model [Internet]. 2022 Nov 1 [cited 2023 May 20];116:108251. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1093326322001309
5. Essam T, Aly Amin M, El Tayeb O, Mattiasson B, Guieysse B. Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res [Internet]. 2007 Apr;41(8):1697–704. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043135407000358
6. Yan X, Yi C, Wang Y, Cao W, Mao D, Ou Q, et al. Multi-catalysis of nano-zinc oxide for bisphenol A degradation in a dielectric barrier discharge plasma system: Effect and mechanism. Sep Purif Technol. 2020 Jan 16;231:115897.
7. Sarkar P, Dey A. 4-Nitrophenol biodegradation by an isolated and characterized microbial consortium and statistical optimization of physicochemical parameters by Taguchi Methodology. J Environ Chem Eng. 2020 Oct 1;8(5):104347.
8. Zhao C, Xue L, Zhou Y, Zhang Y, Huang K. A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol. J Hazard Mater. 2021 May 5;409:124473.
9. Farzinfar B, Qaderi F. Synergistic degradation of aqueous p-nitrophenol using DBD plasma combined with ZnO photocatalyst. Process Saf Environ Prot [Internet]. 2022 Dec;168(August):907–17. Available from: https://doi.org/10.1016/j.psep.2022.10.060
10. Azerrad SP, Isaacs M, Dosoretz CG. Integrated treatment of reverse osmosis brines coupling electrocoagulation with advanced oxidation processes. Chem Eng J [Internet]. 2019 Jan 15 [cited 2023 May 20];356:771–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894718317856
11. Kaplan A, Mamane H, Lester Y, Avisar D. Trace Organic Compound Removal from Wastewater Reverse-Osmosis Concentrate by Advanced Oxidation Processes with UV/O3/H2O2. Materials (Basel) [Internet]. 2020 Jun 19 [cited 2023 May 20];13(12):2785. Available from: https://www.mdpi.com/1996-1944/13/12/2785/htm
12. Giannoulia S, Triantaphyllidou IE, Tekerlekopoulou AG, Aggelopoulos CA. Mechanisms of Individual and Simultaneous Adsorption of Antibiotics and Dyes onto Halloysite Nanoclay and Regeneration of Saturated Adsorbent via Cold Plasma Bubbling. Nanomaterials [Internet]. 2023 Jan 1 [cited 2023 May 20];13(2):341. Available from: https://www.mdpi.com/2079-4991/13/2/341/htm
13. Deng Y, Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollut Reports [Internet]. 2015 Sep 18 [cited 2023 May 20];1(3):167–76. Available from: https://link.springer.com/article/10.1007/s40726-015-0015-z
14. Iakovides IC, Michael-Kordatou I, Moreira NFF, Ribeiro AR, Fernandes T, Pereira MFR, et al. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Res [Internet]. 2019 Aug;159:333–47. Available from: https://doi.org/10.1016/j.watres.2019.05.025
15. Hou X, Qiu Y, Yuan E, Li F, Li Z, Ji S, et al. Promotion on light olefins production through modulating the reaction pathways for n-pentane catalytic cracking over ZSM-5 based catalysts. Appl Catal A Gen. 2017 Aug 5;543:51–60.
16. Meijide J, Rosales E, Pazos M, Sanromán MA. p-Nitrophenol degradation by electro-Fenton process: Pathway, kinetic model and optimization using central composite design. Chemosphere. 2017 Oct 1;185:726–36.
17. Martins RC, Rossi AF, Quinta-Ferreira RM. Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. J Hazard Mater. 2010 Aug 15;180(1–3):716–21.
18. Lin J, Hu H, Gao N, Ye J, Chen Y, Ou H. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant. J Water Process Eng [Internet]. 2020 Feb;33(October 2019):101010. Available from: https://doi.org/10.1016/j.jwpe.2019.101010
19. Yang T, Peng J, Zheng Y, He X, Hou Y, Wu L, et al. Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Appl Catal B Environ [Internet]. 2018 Feb 1 [cited 2023 Apr 24];221:223–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926337317308640
20. Shang K, Li W, Wang X, Lu N, Jiang N, Li J, et al. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep Purif Technol. 2019 Jul 1;218:106–12.
21. Hama Aziz KH, Mahyar A, Miessner H, Mueller S, Kalass D, Moeller D, et al. Application of a planar falling film reactor for decomposition and mineralization of methylene blue in the aqueous media via ozonation, Fenton, photocatalysis and non-thermal plasma: A comparative study. Process Saf Environ Prot. 2018 Jan 1;113:319–29.
22. Yu Q, Gao Y, Tang X, Yi H, Zhang R, Zhao S, et al. Removal of NO from flue gas over HZSM-5 by a cycling adsorption-plasma process. Catal Commun [Internet]. 2018;110(December 2017):18–22. Available from: https://doi.org/10.1016/j.catcom.2018.02.025
23. Liu Y, Wang C, Huang K, Miruka AC, Dong A, Guo Y, et al. Degradation of glucocorticoids in water by dielectric barrier discharge and dielectric barrier discharge combined with calcium peroxide: performance comparison and synergistic effects. J Chem Technol Biotechnol. 2019;94(11):3606–17.
24. Xin YY, Zhou L, Ma K ke, Lee J, Qazi HIA, Li HP, et al. Removal of bromoamine acid in dye wastewater by gas-liquid plasma: The role of ozone and hydroxyl radical. J Water Process Eng. 2020 Oct 1;37:101457.
25. Shang K, Wang X, Li J, Wang H, Lu N, Jiang N, et al. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chem Eng J [Internet]. 2017 Mar [cited 2022 Jun 11];311:378–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894716316655
26. Trinh QH, Mok YS. Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds. Korean J Chem Eng [Internet]. 2016 Mar 20 [cited 2023 May 20];33(3):735–48. Available from: https://link.springer.com/article/10.1007/s11814-015-0300-y
27. Zhao C, Xue L, Zhou Y, Zhang Y, Huang K. A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol. J Hazard Mater [Internet]. 2021 May 5 [cited 2022 Aug 24];409. Available from: https://pubmed.ncbi.nlm.nih.gov/33191026/
28. Wang B, Zhang H, Wang F, Xiong X, Tian K, Sun Y, et al. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts [Internet]. 2019 Mar 5;9(3):241. Available from: https://www.mdpi.com/2073-4344/9/3/241
29. Kuosa M, Kallas J, Häkkinen A. Ozonation of p-nitrophenol at different pH values of water and the influence of radicals at acidic conditions. J Environ Chem Eng. 2015 Mar 1;3(1):325–32.
30. Bradu C, Magureanu M, Parvulescu VI. Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system. J Hazard Mater [Internet]. 2017 Aug;336:52–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304389417302996
31. Dobrin D, Magureanu M, Bradu C, Mandache NB, Ionita P, Parvulescu VI. Degradation of methylparaben in water by corona plasma coupled with ozonation. Environ Sci Pollut Res [Internet]. 2014 Nov 8;21(21):12190–7. Available from: http://link.springer.com/10.1007/s11356-014-2964-y
32. SHANG K, LI J, MORENT R. Hybrid electric discharge plasma technologies for water decontamination: a short review. Plasma Sci Technol [Internet]. 2019 Apr;21(4):043001. Available from: https://iopscience.iop.org/article/10.1088/2058-6272/aafbc6
33. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, et al. Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J [Internet]. 2014 Jan 15 [cited 2022 Jun 11];236:348–68. Available from: http://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=NART67449527
34. Mirzaei A, Yerushalmi L, Chen Z, Haghighat F. Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C 3 N 4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J Hazard Mater [Internet]. 2018 Oct 5 [cited 2022 Aug 24];359:516–26. Available from: https://pubmed.ncbi.nlm.nih.gov/30086522/
35. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta [Internet]. 2008 Sep 15;76(5):965–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0039914008004050
36. Tamadoni A, Qaderi F. Optimization of Soil Remediation by Ozonation for PAHs Contaminated Soils. Ozone Sci Eng [Internet]. 2019 Sep 3 [cited 2022 Jun 11];41(5):454–72. Available from: https://www.tandfonline.com/doi/abs/10.1080/01919512.2019.1615865
37. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, et al. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Appl Catal B Environ. 2016 Feb 1;181:371–8.
38. Zhang W, Li G, Wang W, Qin Y, An T, Xiao X, et al. Enhanced photocatalytic mechanism of Ag3PO4 nano-sheets using MS2 (M = Mo, W)/rGO hybrids as co-catalysts for 4-nitrophenol degradation in water. Appl Catal B Environ. 2018 Sep 15;232:11–8.
39. Guo H, Jiang N, Wang H, Shang K, Lu N, Li J, et al. Pulsed discharge plasma induced WO3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway. Chemosphere [Internet]. 2019 Sep 1 [cited 2023 Apr 24];230:190–200. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653519309075
40. Wang TC, Lu N, An JT, Zhao Y, Li J, Wu Y. Multi-tube parallel surface discharge plasma reactor for wastewater treatment. Sep Purif Technol. 2012 Oct 24;100:9–14.
41. Ansari M, Hossein Mahvi A, Hossein Salmani M, Sharifian M, Fallahzadeh H, Hassan Ehrampoush M. Dielectric barrier discharge plasma combined with nano catalyst for aqueous amoxicillin removal: Performance modeling, kinetics and optimization study, energy yield, degradation pathway, and toxicity. Sep Purif Technol. 2020;251(June).
42. Kuosa M, Kallas J, Häkkinen A. Ozonation of p-nitrophenol at different pH values of water and the influence of radicals at acidic conditions. J Environ Chem Eng [Internet]. 2015 Mar;3(1):325–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213343714002309
43. Diao E, Hou H, Dong H. Ozonolysis mechanism and influencing factors of aflatoxin B1: A review. Trends Food Sci Technol [Internet]. 2013 Sep;33(1):21–6. Available from: http://dx.doi.org/10.1016/j.tifs.2013.06.002
44. Isikber AA, Athanassiou CG. The use of ozone gas for the control of insects and micro-organisms in stored products. J Stored Prod Res [Internet]. 2015 Oct;64:139–45. Available from: http://dx.doi.org/10.1016/j.jspr.2014.06.006
45. Hosseinzadeh, Ahmad AAN, , Ali Asghar Navaei , John L. Zhou , Ali Altaee Navid Ramezanian AD, , Teng Bao and MY. Improving Formaldehyde Removal from Water and Wastewater by Fenton, Photo-Fenton and Ozonation/Fenton Processes through Optimization and Modeling. MDPI. 2021;27:19.
46. Qiu C, Yuan S, Li X, Wang H, Bakheet B, Komarneni S, et al. Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode. J Hazard Mater [Internet]. 2014 Sep;280:644–53. Available from: http://dx.doi.org/10.1016/j.jhazmat.2014.09.001