تحلیل تصادفی مسائل الاستواستاتیک دارای عدم‌قطعیت مصالح با روش سلول طیفی

نوع مقاله : پژوهشی اصیل (کامل)

نویسنده
دانشکده فنی و مهندسی، دانشگاه اراک
چکیده
روش سلول طیفی ترکیبی از مفهوم دامنه موهومی و روش المان طیفی است که با استفاده از شبکه‌های کارتزین موجب آسانی شبکه‌بندی می‌شود. این مقاله روشی نوین با نام سلول طیفی تصادفی را برای لحاظ عدم‌قطعیت در مسائل الاستواستاتیک توسعه می‌دهد. روش پیشنهادی همزمان شامل تمام ویژگی‌های روش سلول طیفی و روش المان محدود تصادفی است. روش سلول طیفی تصادفی از توابع درون‌یابی مرتبه بالای المان‌های طیفی از نوع لوباتو استفاده می‌کند. استفاده از این توابع درون‌یابی با توجه به انتگرال‌گیری عددی گاوس-لوباتو-لژاندر، منجر به افزایش کارآمدی این روش عددی می‌شود. بسط‌های کارهیونن‌لو و چندجمله‌ای‌های آشوبی در روش سلول تصادفی طیفی به‌کار گرفته می‌شوند. همچنین این روش معادله انتگرالی فردهلم نوع دوم ناشی از بسط کارهیونن‌لو میدان تصادفی را با سلول‌های طیفی حل می‌کند. استفاده از شبکه کارتزین، توانمندی محاسباتی در حل معادله انتگرالی فردهلم و نیز لحاظ توابع شکلی مرتبه بالا از ویژگی‌های موثر روش پیشنهادی است. نمونه‌های عددی فراهم‌شده در این پژوهش نمایانگر دقت مناسب روش‌ سلول طیفی تصادفی برای حل مسائل مبنای الاستواستاتیکی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Stochastic Analysis of Elastostatic Problems with Material Uncertainty Using Spectral Cell Method

نویسنده English

P. Zakian
Department of Civil Engineering, Faculty of Engineering, Arak University
چکیده English

Nowadays, advances in numerical methods have led to model real-life physical problems effectively. One of the difficulties in modelling the real-life physical problems is the geometric creation, because the mesh definition for a complex geometry is hard. In order to overcome this issue, one can use the spectral cell method due to employing a Cartesian mesh even for a complex geometry, such that constant Jacobian is considered for cells in the mesh. Spectral cell method is a combination of the spectral element method and the fictious domain concept, which uses an adaptive integration employing the quadtree or octree partitioning for the cells intersecting arbitrary boundaries as well as the cells including nonuniform material distribution. The interpolation functions of Lobatto family of spectral elements are utilized in spectral cell method. The spectral cell method is an efficient numerical method to solve the governing equations of continuum structures with complicated geometries. On the other hand, uncertainty naturally exists in the parameters of an engineering system (e.g., elastic modulus) and the input of that system (e.g., loading). Thus, the effects of those uncertainties are important in the response calculation of the engineering system. There are two types of uncertainty: aleatoric and epistemic. Aleatoric uncertainty is defined as an intrinsic variability of certain quantities, while epistemic uncertainty is defined as a lack of knowledge about certain quantities. An alternative to a deterministic modelling is a stochastic modelling, but analysing such a stochastic model is harder than a deterministic model having deterministic material properties and configuration. This is because the behaviour of the stochastic model is inevitably stochastic. Traditionally, Monte-Carlo simulation analyses a stochastic model by generating numerous realizations of the stochastic problem, and then solves each one like a deterministic problem. Nevertheless, Monte-Carlo simulation needs very high computational cost, particularly for large-scale problems. A systematic technique for uncertainty quantification is the stochastic finite element method providing a variety of statistical information. However, the method is computationally expensive with respect to the finite element method, and thus there are many developments for stochastic methods. Consequently, this paper presents stochastic form of spectral cell method to solve elastostatic problems considering material uncertainties. Therefore, uncertainty quantification of an elastostatic problem with geometrically complex domain can be modelled more efficiently than the traditional stochastic finite element method. In the proposed method, Fredholm integral equation is discretised using spectral cell method to solve Karhunen-Loève expansion used for the random field decomposition. Also, this method uses fewer cells than the stochastic finite cell method, and does not require formation of the eigenfunctions. In addition, Karhunen-Loève and polynomial chaos expansions are used to decompose the random field and to consider the response variability, respectively. Simple mesh generation, desirable accuracy and computational cost are the main features of the present method. In this study, two benchmark numerical examples are provided to demonstrate the efficiency and capabilities of the proposed method in the solution of elastostatic problems. The results are compared to those of stochastic finite element method and stochastic spectral element method.

کلیدواژه‌ها English

Elastostatic problem
Stochastic spectral cell method
Probabilistic structural analysis
Fredholm integral equation
Material uncertainty
[1] Kaminski M. The Stochastic Perturbation Method for Computational Mechanics Hoboken: Wiley; 2013.
[2] Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach: Dover Publications; 2003.
[3] Stefanou G. The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering. 2009;198:1031-51.
[4] Zakian P, Khaji N. A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica. 2016;51:893-920.
[5] Khaji N, Zakian P. Uncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element method. Mechanics of Advanced Materials and Structures. 2017;24:1030-42.
[6] Zakian P, Khaji N, Kaveh A. Graph theoretical methods for efficient stochastic finite element analysis of structures. Computers & Structures. 2017;178:29-46.
[7] Zakian P, Khaji N. A stochastic spectral finite element method for wave propagation analyses with medium uncertainties. Applied Mathematical Modelling. 2018;63:84-108.
[8] Zakian P, Khaji N. A stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuities. Computational Mechanics. 2019;64:1017-48.
[9] Parvizian J, Düster A, Rank E. Finite cell method. Computational Mechanics. 2007;41:121-33.
[10] Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International. 1999;139:806-22.
[11] Komatitsch D, Vilotte J-P, Vai R, Castillo-Covarrubias JM, Sánchez-Sesma FJ. The spectral element method for elastic wave equations—application to 2-D and 3-D seismic problems. International Journal for Numerical Methods in Engineering. 1999;45:1139-64.
[12] Li K, Gao W, Wu D, Song C, Chen T. Spectral stochastic isogeometric analysis of linear elasticity. Computer Methods in Applied Mechanics and Engineering. 2018;332:157-90.
[13] Li K, Wu D, Gao W, Song C. Spectral stochastic isogeometric analysis of free vibration. Computer Methods in Applied Mechanics and Engineering. 2019;350:1-27.
[14] Zakian P. Stochastic finite cell method for structural mechanics. Computational Mechanics. 2021;68:185-210.
[15] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering. 2005;194:4135-95.
[16] Joulaian M, Duczek S, Gabbert U, Düster A. Finite and spectral cell method for wave propagation in heterogeneous materials. Computational Mechanics. 2014;54:661-75.
[17] Oliveira SP, Azevedo JS. Spectral element approximation of Fredholm integral eigenvalue problems. Journal of Computational and Applied Mathematics. 2014;257:46-56.
[18] Huang S, Mahadevan S, Rebba R. Collocation-based stochastic finite element analysis for random field problems. Probabilistic Engineering Mechanics. 2007;22:194-205.