1- Hughes, T. J., Cottrell, J. A., & Bazilevs, Y. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer methods in applied mechanics and engineering, 194(39-41), 4135-4195.
2- Cottrell, J. A., Hughes, T. J. R., & Reali, A. 2007. Studies of refinement and continuity in isogeometric structural analysis. Computer methods in applied mechanics and engineering, 196(41-44), 4160-4183.
3-Wang, D., & Xuan, J. 2010. An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2425-2436.
4-Herrema, A. J., Wiese, N. M., Darling, C. N., Ganapathysubramanian, B., Krishnamurthy, A., & Hsu, M. C. 2017. A framework for parametric design optimization using isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316, 944-965.
5-Cottrell, J. A., Hughes, T. J., & Bazilevs, Y. 2009. Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons.
6-Zienkiewicz, O. C. 2006. The background of error estimation and adaptivity in finite element computations. Computer Methods in Applied Mechanics and Engineering, 195(4-6), 207-213.
7-Babuška, I., Strouboulis, T., Upadhyay, C. S., & Gangaraj, S. K. 1995. A model study of element residual estimators for linear elliptic problems: The quality of the estimators in the interior of meshes of triangles and quadrilaterals. Computers & structures, 57(6), 1009-1028.
8-Shigeru Saito, N. S., Nishida, K., & Kawamura, H. 1997. Preliminary characterization of interlayer for Be/Cu functionally gradient materials. Functionally Graded Materials 1996, 215.
9-Naebe, M., & Shirvanimoghaddam, K. 2016. Functionally graded materials: A review of fabrication and properties. Applied materials today, 5, 223-245.
10- Wang, Y., Wang, Z., Xia, Z., & Poh, L. H. 2018. Structural design optimization using isogeometric analysis: a comprehensive review. Computer Modeling in Engineering & Sciences, 117(3), 455-507.
11-Lipton, R. 2002. Design of functionally graded composite structures in the presence of stress constraints. International journal of solids and structures, 39(9), 2575-2586.
12-Hassani, B., Moghaddam, N. Z., & Tavakkoli, S. M. 2009. Isogeometrical solution of Laplace equation.
13-Rogers, D. F. 2001. An introduction to NURBS: with historical perspective. Morgan Kaufmann.
14-Piegl, L., & Tiller, W. 1996. The NURBS book. Springer Science & Business Media.
15-Reddy, J. N. 1993. An Introduction to the Finite Element Method McGraw-Hill. Inc., New York.
16-Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. 2005. The finite element method: its basis and fundamentals. Elsevier.
17-Zienkiewicz, O. C., & Zhu, J. Z. 1992. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364.
18- Hassani, B., Ganjali, A., & Tavakkoli, M. 2012. An isogeometrical approach to error estimation and stress recovery. European Journal of Mechanics-A/Solids, 31(1), 101-109.
19-Zienkiewicz, O. C., & Taylor, R. L. 2005. The finite element method for solid and structural mechanics. Elsevier.
20-Kim, J. H., & Paulino, G. H. 2002. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J. Appl. Mech., 69(4), 502-514.
21-Burlayenko, V. N., Altenbach, H., Sadowski, T., Dimitrova, S. D., & Bhaskar, A. 2017. Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Applied Mathematical Modelling, 45, 422-438.
22-Dörfel, M. R., Jüttler, B., & Simeon, B. 2010. Adaptive isogeometric analysis by local h-refinement with T-splines. Computer methods in applied mechanics and engineering, 199(5-8), 264-275.