[1] Wood, DM. (2004). Geotechnical modeling, [Version 2.2]. London: Taylor & Francis Group.
[2] Kramer, S.L. (1996). Geotechnical earthquake engineering. New Jersey: Prentice-Hall.
[3] Gazetas, G., and Dakoulas, P. (1992). Seismic analysis and design of rockfill dams: State-of-the-art. Soil Dyn Earthquake Eng, 11, 27-61.
[4] Ambraseys, N.N., and Sarma, S.K. (1967). The response of earth dams to strong earthquakes. Geotechnique, 17,18l-213.
[5] Yaseri, A., Konrad, J.M. (2020). Estimation of Natural periods of Earth Dam-Flexible canyon systems with 3D coupled FEM-SBFEM. Comp Geotech, 123, 103546.
[6] Lekshmy, P.R., Raghukanth, S.T.G. (2021). A hybrid genetic algorithm-neural network model for power spectral density compatible ground motion prediction. Soil Dyn Earthq Eng, 142, 106528.
[7] Koo, K.Y., Cho, S.G., Cui, J., Kim, D. (2010). Seismic response prediction for cabinets of nuclear power plants by using impact hammer test. Nuclear Engineering and Design, 240, pp. 2500-2511.
[8] Niu, Z. (2021). Two-step structural damage detection method for shear frame structures using FRF and Neumann series expansion. Mechanical Systems and Signal Processing 149, 107185.
[9] Sun, W., Wang, Z., Yan, X., Zhu, M. (2018). Inverse identification of the frequency-dependent mechanical parameters of viscoelastic materials based on the measured FRFs. Mechanical Systems and Signal Processing 98, 816-833.
[10] Sharafi, H., Shams Maleki, Y. (2019). Evaluation of the lateral displacements of a sandy slope reinforced by a row of floating piles: A numerical-experimental approach.
Soil Dyn Earthq Eng, 122, pp.148-170.
[11] Altunisik, A.C., Kalkan, E., Okur, F.Y., Ozgan, K., Karahasan, O.S., Bostanci, A. (2019). Non-destructive modal parameter identification of historical timber bridges using ambient vibration tests after restoration. Measurement, 146, pp.411-424.
[12] Sahare, A., Tanaka, Y., Ueda, K. (2020). Numerical study on the effect of rotation radius of geotechnical centrifuge on the dynamic behavior of liquefiable sloping ground. Soil Dyn Earthq Eng, 138, 106339 (2020).
[13] Chortis, G., Askarinejad, A., Prendergast, L.J., Li, Q., Gavin, K. (2020). Influence of scour depth and type on p-y curves for monopoles in sand under monotonic lateral loading in a geotechnical centrifuge. Ocean Eng, 106838.
[14] Gaudin, C., Cassidy, M.J., Bienen, B., Hossain, M.S. (2011). Recent contributions of geotechnical centrifuge modeling to the Understanding of jack-up spudcan behavior. Ocean Eng, 38, 900-914.
[15] Hussien, M.N., Tobita, T., Iai, S., Karray, M. (2016). Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments”, Soil Dyn Earthq Eng, 89, 75-84.
[16] Liang, T., Bengough, A.G., Knappett, J.A., Muir Wood, D., Loades, K.W., Hallett, P.D., Boldrin, D., Leung, A.K., Meijera, G.J. (2017). Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecological Engineering, 109(B), 207-227.
[17] Noble, T.E., Dixon, J.M. (2011). Structural evolution of fold-thrust structures in analog models deformed in a large geotechnical centrifuge. J Struct Geolo, 33, 62-77.
[18] Zhang, G., Hu, Y., Zhang, J.M. (2009). New image analysis-based displacement-measurement system for geotechnical centrifuge modeling tests. Measurement, 42, 87-96.
[19] Zhang, L.L., Tang, W.H., and Zhang, L.M. (2009). Bayesian Model Calibration Using Geotechnical Centrifuge Tests. J Geotech Geoenvironm Eng, 135(2).
[20] Ghayoomi, M., Dashti, S., McCartney, J.S. (2013). Performance of a transparent Flexible Shear Beam container for geotechnical centrifuge modeling of dynamic problems. Soil Dyn Earthq Eng, 53, 230-239.
[21] Lee, S.H., Choo, Y.W., Kim, D.S. (2013). Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests. Soil Dyn Earthq Eng, 44, 102-114.
[22] Mason, H.B., Trombetta, N.W., Chen, Z., Bray, J.D., Hutchinson, T.C., Kutter, B.L. (2013). Seismic soil-foundation-structure interaction observed in geotechnical centrifuge experiments. Soil Dyn Earthq Eng, 48, 162-174.
[23] Al-Defae, A.H., Knappett, J.A. (2014). Centrifuge modelling of the seismic performance of pile reinforced slopes. J Geotech Geoenviron Eng, 140(6), 1-13.
[24] Wang, L.P., Zhang, G., Zhang, J.M. (2011). Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake. Geotext Geomem, 29(3), 222-32.
[25] Al-Defae, A.H., Caucis, K., Knappett, J.A. (2013). After shocks and the whole-life seismic performance of granular slopes. Geotechnique, 63(14), 1230-44.
[26] Zhang, F., Gao, Y., Wu, Y., Zhang, N., Qiu, Y. (2016). Effects of vertical seismic acceleration on 3D slope stability. Earthq Eng Eng Vib, 15(3), pp.487-94.
[27] Davies, M.C.R. (1981). Centrifuge modelling of embankments on clay foundations. PhD Thesis London, UK: University of Cambridge.
[28] Ueno, K. (1998). Methods for preparation of sand samples. Proceedings of 1998 international conference of centrifuge. vol. 98, pp. 1047-56. 2.
[29] PEER (2021). strong ground motion database. NGA-West2. http://peer.berkeley.edu.
[30] Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1 g gravitational field. Soil Found, 29(1),105-118. https://doi.org/10.3208/sandf1972.29.105
[31] American society for testing and materials (1999). Annual book of ASTM standards, sec. 4, vol. 04.08, west Conshohoken Pa.
[32] Seed, H.B., Wong, R.T., Idriss, I.M., Tokimatsu, T. (1986). Moduli and damping factors for dynamic analyses of cohessionless soils. J Geotech Eng, 112, 1016-1032.
[33] NI (2021). National Instruments Corp. http://www.ni.com/.2021.