انتخاب مقیاس بهینه مدل سازی فیزیکی شیب ماسه ای خشک توسط مطالعه آزمایشگاهی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه صنعتی کرمانشاه
2 دانشگاه رازی کرمانشاه
چکیده
در این تحقیق فرکانس های طبیعی مدل های کوچک-مقیاس شیب ماسه ای خشک درون جعبه قوی توسط شبیه سازی های آزمایشگاهی در میدان شتاب 1g اندازه گیری شده است. در مدلسازی های ژئوتکنیکی، ارتباط بین فرکانس های مدل و نمونه واقعی از اهمیت کلیدی برخوردار است. در این مقاله با انجام آزمایش های دینامیکی پالس ضربه چکش، محدوده فرکانس های بهینه تحریک مدل بر مبنای ابعاد و مقیاس هندسی مدل های فیزیکی شیب انتخاب شده است. شیب های ماسه ای مدل با زوایای مختلف 25 تا 60 درجه ای داخل جعبه مدلسازی ایجاد شده اند. دانسیته نسبی مدل های شیب ماسه ای متوسط و در حدود 50 تا 52 درصد است. محدوده فرکانسی مورد بررسی با توجه به مطالعه پیش لرزه ای مدل های میز لرزان بین 001/0 تا 150 هرتز درنظرگرفته شده است. مطابق یافته های پژوهش حاضر، در یک مدل شیب ثابت، فرکانس هایی که در آن ها حداکثر انرژی لرزه ای نهفته است، در مقایسه با فرکانس های با حداکثر دامنه پاسخ بزرگنمایی شده شتاب، کاملا متفاوت هستند. نتایج مطالعه حاضر وجود رابطه ای مابین زاویه شیب ماسه ای، فرکانس های مدل فیزیکی و فرکانس بزرگنمایی را اثبات می کند. به طوری که با افزایش زاویه شیب های مدل در یک ارتفاع ثابت، مقادیر بزرگنمایی پاسخ شتاب ضربه کاهش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Selection of Optimal Scale for Physical Modeling of Dry Sandy Slope by Laboratory Study

نویسندگان English

Y. Shams maleki 1
A.A Akhtari 2
1 Assistant professor of Kermanshah University of Technology
2 Assistant professor of Razi University
چکیده English

In this research, the free vibration or natural frequency analyzes have been performed with the help of small-scale physical models. Laboratory modeling in the geotechnical engineering can be performed in the acceleration field of 1g. In each of the physical modeling modes, the relationship between the model and prototype frequencies is very essential. In this paper, with the help of hammer impact pulse tests (HIPTs) -dynamic experiments- the optimal frequency ranges and the best geometric scales for physical modeling are investigated by a strongbox. The frequency range studied has been selected according to the study of shaking table models between 0.001Hz and 150Hz. To perform impact pulse tests, the physical models of dry sandy slope with different inclination angles from 25 to 60 degrees (and a constatnt slope height) have been instrumented by the piezoelectric acceleration sensors. The relative density of the sandy slope models is medium dense and about 50% to 52%. In addition to 8 physical models of sandy slopes, two models of level-ground and empty box have also been investigated. The time-history of the acceleration function of the input excitation shock at the slope floor (base point) and the response acceleration at the slope crest are recorded by the acceleration sensors. These acceleration time responses last for a short stroke (short impact) of less than 1.0 second duration. After extracting temporal responses, the frequency analyzes including transfer function (TF), Fourier response spectrum ratio (RFRS), and spectral energy density function (PSD-function) are derived from the temporal results. Using the transfer function or RFRS, quantitative values of natural frequencies of the physical model of the sandy slope and the storngbox are extracted in different vibration modes. According to the findings of the present study, for a constant slope model the frequencies at which the maximum seismic or dynamic energy is emitted are quite different from the frequencies with the maximum magnified response amplitude. The results of the present study prove the existence of a logic relationship between the sandy slope inclination angle (physical model natural frequencies) and the model response amplification frequency. So that by increasing the angle of inclination of the model slopes at a constant height, the magnification values of the impact acceleration response decrease. Because in general, the amount of sandy materials magnifies or weakens the amplitude of frequency responses. The presence of low sandy materials (on steep slope models) reduces the magnification range of the acceleration response and high sandy materials (on gentle slopes) increase the response range. Optimal frequencies in strong box modeling in the 1g acceleration field are frequencies that do not interfere with acceleration magnifications before or during seismic excitation (pre-seismic mode). Acceleration magnification causes resonance and premature failure in the physical model, which is generally undesirable and unmeasurable in laboratory studies. In this research, the optimal frequency range according to the measurements is proposed for the physical modeling of the 1g acceleration field. These ranges and frequency values are presented according to the various constraints such as the type of strong box, slope angle, relative density of sand, the actual frequency effect of the horizontal components of earthquakes, and so on.

کلیدواژه‌ها English

Hammer impact pulse test
Resonant frequency
natural frequency
sandy slope
slope angle
[1] Wood, DM. (2004). Geotechnical modeling, [Version 2.2]. London: Taylor & Francis Group.
[2] Kramer, S.L. (1996). Geotechnical earthquake engineering. New Jersey: Prentice-Hall.
[3] Gazetas, G., and Dakoulas, P. (1992). Seismic analysis and design of rockfill dams: State-of-the-art. Soil Dyn Earthquake Eng, 11, 27-61.
[4] Ambraseys, N.N., and Sarma, S.K. (1967). The response of earth dams to strong earthquakes. Geotechnique, 17,18l-213.
[5] Yaseri, A., Konrad, J.M. (2020). Estimation of Natural periods of Earth Dam-Flexible canyon systems with 3D coupled FEM-SBFEM. Comp Geotech, 123, 103546.
[6] Lekshmy, P.R., Raghukanth, S.T.G. (2021). A hybrid genetic algorithm-neural network model for power spectral density compatible ground motion prediction. Soil Dyn Earthq Eng, 142, 106528.
[7] Koo, K.Y., Cho, S.G., Cui, J., Kim, D. (2010). Seismic response prediction for cabinets of nuclear power plants by using impact hammer test. Nuclear Engineering and Design, 240, pp. 2500-2511.
[8] Niu, Z. (2021). Two-step structural damage detection method for shear frame structures using FRF and Neumann series expansion. Mechanical Systems and Signal Processing 149, 107185.
[9] Sun, W., Wang, Z., Yan, X., Zhu, M. (2018). Inverse identification of the frequency-dependent mechanical parameters of viscoelastic materials based on the measured FRFs. Mechanical Systems and Signal Processing 98, 816-833.
[10] Sharafi, H., Shams Maleki, Y. (2019). Evaluation of the lateral displacements of a sandy slope reinforced by a row of floating piles: A numerical-experimental approach.
Soil Dyn Earthq Eng, 122, pp.148-170.
[11] Altunisik, A.C., Kalkan, E., Okur, F.Y., Ozgan, K., Karahasan, O.S., Bostanci, A. (2019). Non-destructive modal parameter identification of historical timber bridges using ambient vibration tests after restoration. Measurement, 146, pp.411-424.
[12] Sahare, A., Tanaka, Y., Ueda, K. (2020). Numerical study on the effect of rotation radius of geotechnical centrifuge on the dynamic behavior of liquefiable sloping ground. Soil Dyn Earthq Eng, 138, 106339 (2020).
[13] Chortis, G., Askarinejad, A., Prendergast, L.J., Li, Q., Gavin, K. (2020). Influence of scour depth and type on p-y curves for monopoles in sand under monotonic lateral loading in a geotechnical centrifuge. Ocean Eng, 106838.
[14] Gaudin, C., Cassidy, M.J., Bienen, B., Hossain, M.S. (2011). Recent contributions of geotechnical centrifuge modeling to the Understanding of jack-up spudcan behavior. Ocean Eng, 38, 900-914.
[15] Hussien, M.N., Tobita, T., Iai, S., Karray, M. (2016). Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments”, Soil Dyn Earthq Eng, 89, 75-84.
[16] Liang, T., Bengough, A.G., Knappett, J.A., Muir Wood, D., Loades, K.W., Hallett, P.D., Boldrin, D., Leung, A.K., Meijera, G.J. (2017). Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecological Engineering, 109(B), 207-227.
[17] Noble, T.E., Dixon, J.M. (2011). Structural evolution of fold-thrust structures in analog models deformed in a large geotechnical centrifuge. J Struct Geolo, 33, 62-77.
[18] Zhang, G., Hu, Y., Zhang, J.M. (2009). New image analysis-based displacement-measurement system for geotechnical centrifuge modeling tests. Measurement, 42, 87-96.
[19] Zhang, L.L., Tang, W.H., and Zhang, L.M. (2009). Bayesian Model Calibration Using Geotechnical Centrifuge Tests. J Geotech Geoenvironm Eng, 135(2).
[20] Ghayoomi, M., Dashti, S., McCartney, J.S. (2013). Performance of a transparent Flexible Shear Beam container for geotechnical centrifuge modeling of dynamic problems. Soil Dyn Earthq Eng, 53, 230-239.
[21] Lee, S.H., Choo, Y.W., Kim, D.S. (2013). Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests. Soil Dyn Earthq Eng, 44, 102-114.
[22] Mason, H.B., Trombetta, N.W., Chen, Z., Bray, J.D., Hutchinson, T.C., Kutter, B.L. (2013). Seismic soil-foundation-structure interaction observed in geotechnical centrifuge experiments. Soil Dyn Earthq Eng, 48, 162-174.
[23] Al-Defae, A.H., Knappett, J.A. (2014). Centrifuge modelling of the seismic performance of pile reinforced slopes. J Geotech Geoenviron Eng, 140(6), 1-13.
[24] Wang, L.P., Zhang, G., Zhang, J.M. (2011). Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake. Geotext Geomem, 29(3), 222-32.
[25] Al-Defae, A.H., Caucis, K., Knappett, J.A. (2013). After shocks and the whole-life seismic performance of granular slopes. Geotechnique, 63(14), 1230-44.
[26] Zhang, F., Gao, Y., Wu, Y., Zhang, N., Qiu, Y. (2016). Effects of vertical seismic acceleration on 3D slope stability. Earthq Eng Eng Vib, 15(3), pp.487-94.
[27] Davies, M.C.R. (1981). Centrifuge modelling of embankments on clay foundations. PhD Thesis London, UK: University of Cambridge.
[28] Ueno, K. (1998). Methods for preparation of sand samples. Proceedings of 1998 international conference of centrifuge. vol. 98, pp. 1047-56. 2.
[29] PEER (2021). strong ground motion database. NGA-West2. http://peer.berkeley.edu.
[30] Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1 g gravitational field. Soil Found, 29(1),105-118. https://doi.org/10.3208/sandf1972.29.105
[31] American society for testing and materials (1999). Annual book of ASTM standards, sec. 4, vol. 04.08, west Conshohoken Pa.
[32] Seed, H.B., Wong, R.T., Idriss, I.M., Tokimatsu, T. (1986). Moduli and damping factors for dynamic analyses of cohessionless soils. J Geotech Eng, 112, 1016-1032.
[33] NI (2021). National Instruments Corp. http://www.ni.com/.2021.