[1] Şeker, O., Akbas B., Shen J. and Zafer Ozturk A.2014 Evaluation of deflection amplification factor in steel moment-resisting frames. The Structural Design of Tall and Special Buildings, 23(12), 897-928. Doi: https://doi.org/10.1002/tal.1090.
[2] ASCE7, Minimum Design Loads for Buildings and Other Structures, ASCE 7-05. Virginia, U.S.A.: American Society of Civil Engineers, 2005.
[3] ASCE7, Minimum Design Loads for Buildings and Other Structures, ASCE 7-10. Virginia, U.S.A.: American Society of Civil Engineers, 2010.
[4] Yakhchalian M., Asgarkhani N. and Yakhchalian M. 2020 Evaluation of deflection amplification factor for steel buckling restrained braced frames. Journal of Building Engineering, 30, p. 101228, 2020/07/01/ 2020, doi: https://doi.org/10.1016/j.jobe.2020.101228.
[5] Kuşyılmaz A. and Topkaya C. 2015 Displacement amplification factors for steel eccentrically braced frames. Earthquake Engineering & Structural Dynamics, 44(2), 167-184, 2015, doi: https://doi.org/10.1002/eqe.2463.
[6] Mahmoudi M. and Zaree M. 2013 Evaluating the displacement amplification factors of concentrically braced steel frames. International Journal of Advanced Structural Engineering, 5(1), 13, 2013/04/26 2013, doi: 10.1186/2008-6695-5-13.
[7] Sohrabi-Haghighat M. and Ashtari P. 2019 Evaluation of Seismic Performance Factors for High-rise Steel Structures with Diagrid System. KSCE Journal of Civil Engineering, 23(11), 4718-4726, 2019/11/01 2019, doi: 10.1007/s12205-019-1546-4.
[8] Malakoutian M., Berman J. W., Dusicka P. and Lopes A. 2016 Quantification of Linked Column Frame Seismic Performance Factors for Use in Seismic Design. Journal of Earthquake Engineering, 20(4), pp. 535-558, 2016/05/18 2016, doi: 10.1080/13632469.2015.1104750.
[9] Lopes A. P. 2016 Seismic behavior and design of the linked column steel frame system for rapid return to occupancy. PDXScholar, 2016.
[10] Dusicka P. and Iwai R. 2007 Development of Linked Column Frame System for Seismic Lateral Loads. Structural Engineering Research Frontiers, 2007, pp. 1-13.
[11] Malakoutian M., Berman J. W. and Dusicka P. 2013 Seismic response evaluation of the linked column frame system. Earthquake Engineering & Structural Dynamics, 42(6), 795-814, 2013, doi: https://doi.org/10.1002/eqe.2245.
[12] FEMA, "Quantification of building seismic performance factors, FEMA P695 ATC-36 Project Report," US Department of Homeland Security, FEMA, Washington, DC, 2009.
[13] Dusicka P. and Lewis G. 2010 Investigation of replaceable sacrificial steel links. Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering, 2010, vol. 1659.
[14] Lopes A., Dusicka P. and Berman J. 2014 Linked column frame steel system performance validation using hybrid simulation. Proc. of Tenth US National Conference on Earthquake Engineering, Anchorage, Alaska, 2014.
[15] Shoeibi S., Gholhaki M. and Kafi M. A. 2019 Simplified force-based seismic design procedure for linked column frame system. Soil Dynamics and Earthquake Engineering, 121, 87-101, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.soildyn.2019.03.003.
[16] Shoeibi S., Kafi M. A. and Gholhaki M. 2018 Performance-Based Seismic Design and Parametric Assessment of Linked Column Frame System. Periodica Polytechnica Civil Engineering, 62(3), 555-569, 2018.
[17] Mohebkhah A. and Tazarv J. 2021 Equivalent viscous damping for linked column steel frame structures. Journal of Constructional Steel Research, 179, 106506, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.jcsr.2020.106506.
[18] De Luca, A., Di Roseto A., Palmeri A. and Gibb A. G. 2018 Performance-based seismic design of steel structures accounting for fuzziness in their joint flexibility. Soil Dynamics and Earthquake Engineering, 115, 799-814, 2018/12/01/ 2018, doi: https://doi.org/10.1016/j.soildyn.2018.09.007.
[19] Paz M. and Leigh W. 2004 International Building Code IBC-2000. Structural Dynamics: Springer, 2004, pp. 757-781.
[20] Abdollahzadeh G., Mohammadgholipour A. and Omranian E. 2019 Seismic Evaluation of Steel Moment Frames Under Mainshock–Aftershock Sequence Designed by Elastic Design and PBPD Methods. Journal of Earthquake Engineering, 23(10), 1605-1628, 2019/11/26 2019, doi: 10.1080/13632469.2017.1387198.
[21] Loulelis D., Hatzigeorgiou G. and Beskos D. 2012 Moment resisting steel frames under repeated earthquakes. Earthquake and Structures, 3(3-4), 231-248, 2012.
[22] Silwal B. and Ozbulut O. E. 2018 Aftershock fragility assessment of steel moment frames with self-centering dampers. Engineering Structures, 168, 12-22, 2018/08/01/ 2018, doi: https://doi.org/10.1016/j.engstruct.2018.04.071.
[23] Shi F., Saygili G., Ozbulut O. E. and Zhou Y. 2020 Risk-based mainshock-aftershock performance assessment of SMA braced steel frames. Engineering Structures, 212, 110506, 2020/06/01/ 2020, doi: https://doi.org/10.1016/j.engstruct.2020.110506.
[24] Amirsoleimani P., Panahi A., Ghodrati Amiri G. and Darvishan E. 2019 Comparison of Seismic Behavior of Buckling-restrained Braces and Yielding Brace System in Irregular and Regular Steel Frames under Mainshock and Mainshock-Aftershock," International Journal of Engineering, 32(11), 1591-1609, 2019.
[25] Morfuni F., Freddi F. and Galasso C. 2019 Seismic performance of dual systems with BRBs under mainshock-aftershock sequences. 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), 2019, 13: Seoul National University.
[26] Veismoradi S., Cheraghi A. and Darvishan E. 2018 Probabilistic mainshock-aftershock collapse risk assessment of buckling restrained braced frames. Soil Dynamics and Earthquake Engineering, 115, 205-216, 2018/12/01/ 2018, doi: https://doi.org/10.1016/j.soildyn.2018.08.029.
[27] Mohsenian V., Filizadeh R., Hajirasouliha I. and Garcia R. 2021 Seismic performance assessment of eccentrically braced steel frames with energy-absorbing links under sequential earthquakes. Journal of Building Engineering, 33, 101576, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.jobe.2020.101576.
[28] Uang C. M. 1991 Establishing R (or Rw) and Cd Factors for Building Seismic Provisions. Journal of Structural Engineering, 117(1), pp. 19-28, 1991/01/01 1991, doi: 10.1061/(ASCE)0733-9445(1991)117:1(19).
[29] Iranian Code of Practice for Seismic Resistance Design of Buildings, Standard No. 2800, 4th edition, BHRC, 2016.
[30] Mazzoni S., McKenna F., Scott M. and Fenves G. 2006 Open system for earthquake engineering simulation (OpenSees). User command language manual, Pacific Earthquake Engineering Research Center. University of California, Berkeley, vol. 465, 2006.
[31] Sumner E. A. and Murray T. M. 2002 Behavior of Extended End-Plate Moment Connections Subject to Cyclic Loading. Journal of Structural Engineering, 128(4), pp. 501-508, 2002, doi: doi:10.1061/(ASCE)0733-9445(2002)128:4(501).
[32] Liu J. and Astaneh-Asl A. 1999 Cyclic Behavior of Steel Shear Connections Including Floor Slab. Proc. Of 8th Canadian Conf. On Earthquake Engineering, 1999, vol. 11.
[33] Liu J. and Astaneh-Asl A. 2004 Moment and Rotation Parameters for Composite Shear Tab Connections. Journal of Structural Engineering, 130(90), 1371-1380, 2004, doi: doi:10.1061/(ASCE)0733-9445(2004)130:9(1371).
[34] Ghodrati Amiri G. and Dana F. M. 2005 Introduction of the most suitable parameter for selection of critical earthquake. Computers & Structures, 83(8), pp. 613-626, 2005/03/01/ 2005, doi: https://doi.org/10.1016/j.compstruc.2004.10.010.
[35] Ghodrati Amiri G. and Rajabi E. 2017 Damage evaluation of reinforced concrete and steel frames under critical successive scenarios. International Journal of Steel Structures, 17(4), pp. 1495-1514, 2017/12/01 2017, doi: 10.1007/s13296-017-1218-5.
[36] Hatzigeorgiou G. D. 2010 Ductility demand spectra for multiple near- and far-fault earthquakes. Soil Dynamics and Earthquake Engineering, 30(4), pp. 170-183, 2010/04/01/ 2010, doi: https://doi.org/10.1016/j.soildyn.2009.10.003.
[31] Sumner E. A. and Murray T. M. 2002 Behavior of Extended End-Plate Moment Connections Subject to Cyclic Loading. Journal of Structural Engineering, 128(4), pp. 501-508, 2002, doi: doi:10.1061/(ASCE)0733-9445(2002)128:4(501).
[32] Liu J. and Astaneh-Asl A. 1999 Cyclic Behavior of Steel Shear Connections Including Floor Slab. Proc. Of 8th Canadian Conf. On Earthquake Engineering, 1999, vol. 11.
[33] Liu J. and Astaneh-Asl A. 2004 Moment and Rotation Parameters for Composite Shear Tab Connections. Journal of Structural Engineering, 130(90), 1371-1380, 2004, doi: doi:10.1061/(ASCE)0733-9445(2004)130:9(1371).
[34] Ghodrati Amiri G. and Dana F. M. 2005 Introduction of the most suitable parameter for selection of critical earthquake. Computers & Structures, 83(8), pp. 613-626, 2005/03/01/ 2005, doi: https://doi.org/10.1016/j.compstruc.2004.10.010.
[35] Ghodrati Amiri G. and Rajabi E. 2017 Damage evaluation of reinforced concrete and steel frames under critical successive scenarios. International Journal of Steel Structures, 17(4), pp. 1495-1514, 2017/12/01 2017, doi: 10.1007/s13296-017-1218-5.
[36] Hatzigeorgiou G. D. 2010 Ductility demand spectra for multiple near- and far-fault earthquakes. Soil Dynamics and Earthquake Engineering, 30(4), pp. 170-183, 2010/04/01/ 2010, doi: https://doi.org/10.1016/j.soildyn.2009.10.003.