[1] Tkaczewska, E. Effect of size fraction and glass structure of siliceous fly ashes on fly ash cement hydration, Journal of Industrial and Engineering Chemistry, Volume 20, Issue 1, Pages 315-321, 2014, https://doi.org/10.1016/j.jiec.2013.03.032.
[2] Gołek, Ł. Glass powder and high-calcium fly ash based binders – Long term examinations, Journal of Cleaner Production, Volume 220, Pages 493-506, 2019, https://doi.org/10.1016/j.jclepro.2019.02.095.
[3] Dabrowski, M. and Glinicki, M. A. Influence of aggregate type on the durability of concrete made of blended cements with calcerous fly ash, Editor(s): A.M. Brandt, J. Olek, M.A. Glinicki, C.K.Y. Leung, Brittle Matrix Composites 10, Woodhead Publishing, Pages 305-313, 2012, https://doi.org/10.1533/9780857099891.305.
[4] Li, G., Zhang, A., Song, Zh., Liu, Sh., Zhang, J., Ground granulated blast furnace slag effect on the durability of ternary cementitious system exposed to combined attack of chloride and sulfate, Construction and Building Materials, Volume 158, Pages 640-648, 2018, https://doi.org/10.1016/j.conbuildmat.2017.10.062.
[5] Ghorab, H.Y., Rizk, M., Meawad, A.S., El Sayed M., Reporting the performance of the rice straw ash as cement replacement material, Cem. Wapno Bet. 23, 107–114, 2018.
[6] Camiletti, J., Soliman, A.M., Nehdi, M.L. Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete. Mater Struct 46, 881–898 (2013). https://doi.org/10.1617/s11527-012-9940-0.
[7] Siddique, R., Jameel, A., Singh, M., Barnat-Hunek, D., Kunal, Aït-Mokhtar, A., Belarbi, R., Rajor, A., Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete, Construction and Building Materials, Volume 142, Pages 92-100, 2017, https://doi.org/10.1016/j.conbuildmat.2017.03.057.
[8] Horszczaruk, E., Role of nanosilica in the formation of the properties of cement composites, state of the art, Cem. Wapno Bet. 23, 487–495, 2018.
[9] Ding, J.T., Li, Z., Effects of metakaolin and silica fume on properties of concrete, ACI materials journal, v. 99, (4), JUL-AUG, p. 393-398, 2002, http://hdl.handle.net/1783.1/23320.
[10] Gołek, Ł., Kapeluszna, E., Rzepa, Investigations of the glass activity in municipal and special incinerating plants waste, Cem. Wapno Bet. 22, 79–91, 2017.
[11] Andrew, R.M., Global CO2 emissions from cement production, Earth Syst. Sci. Data.10, 195–217. 2018, https://doi.org/10.5194/essd-10-195-2018.
[12] Giergiczny, Z., The hydraulic activity of high calcium fly Ash, J. Therm. Anal. Calorim. 83, 227–232, 2006. https://doi.org/10.1007/s10973-005-6970-7.
[13] Neville, A., Ajdukiewicz, A., Degler, A., Neville, A. M., Właściwości betonu; wyd. 4 w 2000 r. z jęz. ang. tł. Andrzej Ajdukiewicz, Andrzej Degler, Janusz Kasperkiewicz ; red. nauk. i uzup. tł. wyd. 5, Andrzej Ajdukiewicz, 2012.
[14] Markiv, T., Sobol, K., Franus, M., Franus, W., Mechanical and durability properties of concretes incorporating natural zeolite, Arch. Civ. Mech. Eng. 16, 554–562, 2016. https://doi.org/10.1016/j.acme.2016.03.013.
[15] Al-Akhras, N.M., Durability of metakaolin concrete to sulfate attack, Cem. Concr. Res. 36, 1727–1734, 2006. https://doi.org/10.1016/j.cemconres.2006.03.026.
[16] Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., Chaipanich, A., Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume, Mater. Des. 64, 261–269. 2014. https://doi.org/10.1016/j.matdes.2014.07.042.
[17] Baquerizo, L.G., Matschei, T., Scrivener, K.L., Saeidpour, M., Wadsö, L., Hydration states of Afm cement phases, Cem. Concr. Res. 73, 143–157, 2015. https://doi.org/10.1016/j.cemconres.2015.02.011.
[18] Birnin-Yauri, U.A., Glasser, F.P., Friedel’s salt, Ca2Al(OH)6(Cl, OH)·2H2O: Its solid solutions and their role in chloride binding, Cem. Concr. Res. 28, 1713–1723, 1998. https://doi.org/10.1016/S0008-8846(98)00162-8.
[19] Suryavanshi, A.K., Scantlebury, J.D., Lyon, S.B., Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate، Cem. Concr. Res. 26, 717–727, 1996. https://doi.org/10.1016/S0008-8846(96)85009-5.
[20] Paul, G., Boccaleri, E., Buzzi, L., Canonico, F., Gastaldi, D., Friedel’s salt formation in sulfoaluminate cements: A combined XRD and27Al MAS NMR study, Cem. Concr. Res. 67, 93–102, 2015. https://doi.org/10.1016/j.cemconres.2014.08.004.
[21] Bube, C., Metz, V., Bohnert, E., Garbev, K., Schild, D., Kienzler, B., Long-term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt –Leaching experiments and thermodynamic simulations, Phys. Chem. Earth, PartsA/B/C. 64, 87–94, 2013. https://doi.org/10.1016/j.pce.2012.11.001.
[22] Merida, A., Kharchi, F., Pozzolan Concrete Durability on Sulphate Attack, Procedia Engineering, Volume 114, Pages 832-837, 2015. https://doi.org/10.1016/j.proeng.2015.08.035.
[23] Gollop, R.S., Taylor, H.F.W., Microstructural and microanalytical studies of sulfate attack. Ii. Sulfate-resisting portland cement: Ferrite composition and hydration, chemistry، in: Blue Circ. Ind. PLC Tech. Centre, 305 London Road Greenhithe, Kent, DA9 9JQ, UK: pp. 1347–1358, 1994. https://doi.org/10.1016/0008-8846(94)90120-1.
[24] Mehta, P.K., Sulfate attack in marine environment, Am. Ceram. Soc. INC, Mater. Sci. Concr. Sulfate Attack Mech. 295–299, 1999.
[25] Ghrici, M., Kenai, S., Said-Mansour, M., Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements, Cem. Concr. Compos. 29, 542–549, 2007. https://doi.org/10.1016/j.cemconcomp.2007.04.009.
[26] Torii, K., Mitsunori, K., Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack, Cem. Concr. Res. 24, 361–370, 1994. https://doi.org/10.1016/0008-8846(94)90063-9.
[27] Roy, D.M., Arjunan, P., Silsbee, M.R., Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete, Cement and Concrete Research, Volume 31, Issue 12, Pages 1809-1813, 2001. https://doi.org/10.1016/S0008-8846(01)00548-8.
[28] Samimi, K., Kamali-Bernard, S., Maghsoudi, A. A., Maghsoudi, M., Siad, H., Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes, Construction and Building Materials, Volume 151, Pages 292-311, 2017, https://doi.org/10.1016/j.conbuildmat.2017.06.071.
[29] Elahi, M.M.A., Shearer, Ch.R., Rashid Reza, A.N., Saha, A.K., Newaz Khan, M.N., Hossain, M.M., Sarker, P.K., Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review, Construction and Building Materials, Volume 281, 122628, 2021, https://doi.org/10.1016/j.conbuildmat.2021.122628.
[30] ASTM (2020) C1240-20: Standard Specification for Silica Fume Used in Cementitious Mixtures, ASTM International، West Conshohocken، PA، USA، http://www.astm.org/cgi-bin/resolver.cgi?C1240-20.
[31] ASTM (2018) C989/C989M-18a: Standard Specification for Slag Cement for Use in Concrete and Mortars، ASTM International، West Conshohocken، PA، USA، http://www.astm.org/cgi-bin/resolver.cgi?C989C989M-18a.
[32] ASTM (2019) C618-19: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, USA, http://www.astm.org/cgi-bin/resolver.cgi?C618-19.
[33] ASTM (2015) C127-15: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, USA, http://www.astm.org/cgi-bin/resolver.cgi?C127-15.
[34] [ASTM (2015) C128-15: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, USA, http://www.astm.org/cgi-bin/resolver.cgi?C128-15.
[35] ASTM (2018) C33/C33M-18: Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, USA, http://www.astm.org/cgi-bin/resolver.cgi?C33C33M-18.
[36] ASTM (2019) C494/C494M-19: Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, USA, http://www.astm.org/cgi-bin/resolver.cgi?C494C494M-19.
[37] BSI (2019) EN 12390-2:2019. Testing hardened concrete. Making and curing specimens for strength tests. BSI, London, UK.
[38] BSI (2019) EN 12390-3:2019. Testing hardened concrete. Compressive strength of test specimens. BSI, London, UK.
[39] BSI (2011) BS 1881-122:2011. Testing concrete. Method for determination of water absorption. BSI, London, UK.
[40] BSI (2019) EN 12390-8:2019. Testing hardened concrete. Depth of penetration of water under pressure. BSI, London, UK.
[41] Mehta PK and Monteiro PJM (2013) Concrete: Microstructure, Properties, and Materials, Page 44, McGraw-Hill Education, ISBN 9780071797870.