1. Horvath, C. Hendrickson, Comparison of Environmental Implications of Asphalt and Steel-Reinforced Concrete Pavements, Transp. Res. Rec. J. Transp. Res. Board. 1626 (1998) 105–113. https://doi.org/10.3141/1626-13.
2. E.K. Anastasiou, A. Liapis, I. Papayianni, Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials, Resour. Conserv. Recycl. 101 (2015) 1–8. https://doi.org/10.1016/j.resconrec.2015.05.009.
3. M. Moradgholi, M.A. Irandegani, Investigation of concrete behaviour containing Metakaolin being exposed by short-term and long – term cycles of melting and freezing, J. Nov. App. Sci. (2014) 1250–1253.
4. Farnam Y, Esmaeeli HS, Zavattieri PD, Haddock J, Weiss J. Incorporating phase change materials in concrete pavement to melt snow and ice. Cem Concr Compos [Internet]. 2017;84:134–45. Available from: https://doi.org/10.1016/j.cemconcomp.2017.09.002.
5. Anupam BR, Sahoo UC, Rath P. Phase change materials for pavement applications: A review. Constr Build Mater [Internet]. 2020;247:118553. Available from: https://doi.org/10.1016/j.conbuildmat.2020.118553
6. S.A. Barbhuiya, J.K. Gbagbo, M.I. Russell, P.A.M. Basheer, Properties of fly ash concrete modified with hydrated lime and silica fume, Constr. Build. Mater. 23 (2009) 3233–3239. https://doi.org/10.1016/j.conbuildmat.2009.06.001.
7. J.H. Filho, M.H.F. Medeiros, E. Pereira, P. Helene, G.C. Isaia, High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test, J. Mater. Civ. Eng. 25 (2013) 411–418. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000596.
8. K. Samimi, G.R. Dehghan Kamaragi, R. Le Roy, Microstructure, thermal analysis and chloride penetration of self-compacting concrete under different conditions, Mag. Concr. Res. 71 (2019) 126–143. https://doi.org/10.1680/jmacr.17.00367.
9. B. Ahmadi, J. Sobhani, M. Shekarchi, M. Najimi, Transport properties of ternary concrete mixtures containing natural zeolite with silica fume or fly ash, Mag. Concr. Res. 66 (2014) 150–158. https://doi.org/10.1680/macr.13.00224.
10. E. Vejmelková, D. Koňáková, T. Kulovaná, M. Keppert, J. Žumár, P. Rovnaníková, Z. Keršner, M. Sedlmajer, R. Černý, Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance, Cem. Concr. Compos. 55 (2015) 259–267. https://doi.org/10.1016/j.cemconcomp.2014.09.013.
11. Girskas G, Skripkiūnas G. The effect of synthetic zeolite on hardened cement paste microstructure and freeze-thaw durability of concrete. Constr Build Mater. 2017;142:117–27. http://dx.doi.org/10.1016/j.conbuildmat.2017.03.056.
12. Zheng X, Zhang J, Ding X, Chu H, Zhang J. Frost resistance of internal curing concrete with calcined natural zeolite particles. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.123062
13. P. Dinakar, P.K. Sahoo, G. Sriram, Effect of Metakaolin Content on the Properties of High Strength Concrete, Int. J. Concr. Struct. Mater. 7 (2013) 215–223. https://doi.org/10.1007/s40069-013-0045-0.
14. BS EN 12390-2:2019 Testing hardened concrete. Making and curing specimens for strength tests.
15. ASTM C78 / C78M-15a, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), (2015). https://doi.org/10.1520/C0078_C0078M-15A.
16. ASTM C1585-11, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, (2011). https://doi.org/10.1520/C1585-11.
17. ASTM C672 / C672M-03, Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals (Withdrawn 2012), (2003). https://doi.org/10.1520/C0672_C0672M-03.
18. S.U. Khan, M.F. Nuruddin, N. Shafiq, Strength Development of Concrete Incorporating Metakaolin and PVA Fibres, Appl. Mech. Mater. 567 (2014) 505–510. https://doi.org/10.4028/www.scientific.net/AMM.567.505.
19. H.S. Al-alaily, A.A.A. Hassan, Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin, Constr. Build. Mater. 114 (2016) 564–579. https://doi.org/10.1016/j.conbuildmat.2016.03.187.
20. C. Karakurt, H. Kurama, I.B. Topçu, Utilization of natural zeolite in aerated concrete production, Cem. Concr. Compos. 32 (2010) 1–8. https://doi.org/10.1016/j.cemconcomp.2009.10.002.
21. Ş. Kilinçarslan, The effect of zeolite amount on the physical and mechanical properties of concrete, Int. J. Phys. Sci. 6 (2011) 3041–3046. https://doi.org/10.5897/IJPS10.164.
22. A. Joshaghani, M.A. Moeini, M. Balapour, Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete, Adv. Concr. Constr. 5 (2017) 241–255. https://doi.org/10.12989/acc.2017.5.3.241.