[1] Xia, W. Y., Feng, Y. S., Du, Y. J., Reddy, K. R., & Wei, M. L. (2018). Solidification and stabilization of heavy metal–contaminated industrial site soil using KMP binder. Journal of Materials in Civil Engineering, 30(6), 04018080.
[2] Rajendran, S., Priya, T.A.K., Khoo, K.S., Hoang, T.K.A., Ng, Munawaroh, H.S.H., Karaman, C., Orooji, Y., Show, P.L., (2022), A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils, Chemosphere, Vol. 287, Part 4, 132369.
[3] Wang, H., Ju, C., Zhou, M., Chen, J., Dong, Y., Hou, H., (2022). Sustainable and efficient stabilization/solidification of Pb, Cr, and Cd in lead-zinc tailings by using highly reactive pozzolanic solid waste, Journal of Environmental Management, Vol. 306.
[4] USEPA (1997), Innovative site remediation technology: Volume 4, design and application, stabilization/solidification, Center for Environmental Research Information: Risk Reduction Engineering Laboratory, Office of Solid Waste and Emergency Response, US Environmental Protection Agency.
[5] Rupasinghe, M., San Nicolas, R., Mendis, P., Sofi, M., & Ngo, T. (2017). Investigation of strength and hydration characteristics in nano-silica incorporated cement paste. Cement and Concrete Composites, 80, 17-30.
[6] Rupasinghe, M., San Nicolas, R., Mendis, P., & Sofi, M. (2014). Analyzing the pozzolanic reactivity of nano-silica in cement paste.
[7] Said, A. M., Zeidan, M. S., Bassuoni, M. T., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36, 838-844.
[8] García-Taengua, E., Sonebi, M., Hossain, K. M. A., Lachemi, M., & Khatib, J. (2015). Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars. Composites Part B: Engineering, 81, 120-129.
[9] Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (Vol. 3). Hoboken, NJ: John Wiley & Sons.
[10] Yong, R. N. (2001). Contaminated soils, pollutant fate and mitigation.
[11] Mitchell, J. K., & Soga, K. (1993). Fundamentals of Soil Behavior, John Wiley & Sons. Inc., New York, 422.
[12] American Society for Testing and Materials, Annual Book of ASTM Standards, Soil and Rock; Building Stones, Vol. 4.08, Philadelphia, PA, (2016).
[13] Wang, L., Tsang, D. C., & Poon, C. S. (2015). Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/ solidification. Chemosphere, 122, 257-264.
[14] Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3-4), 377-394.
[15] Keller, W. D. (1963). The origin of high-alumina clay minerals—a review. Clays and Clay minerals, 12(1), 129-151.
[16] Yong, R. N., Galvez-Cloutier, R., & Phadungchewit, Y. (1993). Selective sequential extraction analysis of heavy-metal retention in soil. Canadian Geotechnical Journal, 30(5), 834-847.
[17] Taylor, H. F. (1997). Cement chemistry. Thomas Telford.
[18] Mehta, P. K., & Monteiro, P. J. (2006). Concrete: microstructure, properties, and materials (No. Sirsi) i9780071462891.
[19] Yong, R. N., Nakano, M., & Pusch, R. (2012). Environmental soil properties and behaviour. CRC Press.
[20] Xia, W. Y., Feng, Y. S., Jin, F., Zhang, L. M., & Du, Y. J. (2017). Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Construction and Building Materials, 156, 199-207.
[21] Bates, E., & Hills, C. (2015). Stabilization and solidification of contaminated soil and waste: a manual of practice. September 2015.
[22] Bahmani, S. H., Huat, B. B., Asadi, A., & Farzadnia, N. (2014). Stabilization of residual soil using SiO2 nanoparticles and cement. Construction and Building Materials, 64, 350-359.
[23] Chakraborty, S.C., Qamruzzaman, M., Zaman, M.W.U., Alam, M.M., Hossain, M.D., Pramanik, B.K., et al., (2022), Metals in e-waste: Occurrence, fate, impacts and remediation technologies, Process Safety and Environmental Protection, Vol. 162.
[24] Bishop, P. L. (1988). Leaching of inorganic hazardous constituents from stabilized/solidified hazardous wastes. Hazardous Waste and Hazardous Materials, 5(2), 129-143.
[25] Yong, R. N., Warkentin, B. P., Phadungchewit, Y., & Galvez, R. (1990). Buffer capacity and lead retention in some clay materials. Water, Air, and Soil Pollution, 53(1-2), 53-67.
[26] Yong, R. N., & Phadungchewit, Y. (1993). pH influence on selectivity and retention of heavy metals in some clay soils. Canadian Geotechnical Journal, 30(5), 821-833.
[27] Ouhadi, V. R., & Amiri, M. (2011). Geoenvironmental behaviour of nanoclays in interaction with heavy metals contaminant. Amirkabir J, Civil, 42(3), 29-36.
[28] Nehdi, M. L. (2014). Clay in cement-based materials: Critical overview of state-of-the-art. Construction and Building Materials, 51, 372-382.