[1] Tabatabai, H. and Dickson, T.J., 1993. “The history of the prestressing strand development length equation”. PRECAST/PRESTRESSED CONCRETE INSTITUTE. JOURNAL, 38(6).
[2] Salem, H. M., & Helmy, H. M. (2014). “Numerical investigation of collapse of the Minnesota I-35W bridge”. Engineering Structures, 59, 635-645.
[3] Davis, A. G., Ansari, F., Gaynor, R. D., Lozen, K. M., Rowe, T. J., Caratin, H., ... & Sansalone, M. J. (1998). “Nondestructive test methods for evaluation of concrete in structures. American Concrete Institute”, ACI, 228.
[4] McCann, D. M., & Forde, M. C. (2001). “Review of NDT methods in the assessment of concrete and masonry structures”. Ndt & E International, 34(2), 71-84.
[5] Park, S., Stubbs, N., Bolton, R., Choi, S., & Sikorsky, C. (2001). “Field verification of the damage index method in a concrete box‐girder bridge via visual inspection”. Computer‐Aided Civil and Infrastructure Engineering, 16(1), 58-70.
[6] Sohn, H., Dutta, D., Yang, J. Y., DeSimio, M., Olson, S., & Swenson, E. (2011). Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Materials and Structures, 20(4), 045017.
[7] Solla, M., Lorenzo, H., Novo, A., & Caamaño, J. C. (2012). Structural analysis of the Roman Bibei bridge (Spain) based on GPR data and numerical modelling. Automation in Construction, 22, 334-339.
[8] Abraham, M. A., Park, S., & Stubbs, N. (1995, April). Loss of prestress prediction based on nondestructive damage location algorithms. In Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways (Vol. 2446, pp. 60-67). International Society for Optics and Photonics.
[9] Cha, Y. J., & Buyukozturk, O. (2015). Structural damage detection using modal strain energy and hybrid multiobjective optimization. Computer‐Aided Civil and Infrastructure Engineering, 30(5), 347-358.
[10] Shiravand, M. R., & Parvanehro, P. (2017). Numerical study on damage mechanism of post-tensioned concrete box bridges under close-in deck explosion. Engineering Failure Analysis, 81, 103-116.
[11] Tonnoir, B., Carde, C., & Banant, D. (2018). Curvature: An Indicator of the Mechanical Condition of Old Prestressed Concrete Bridges. Structural Engineering International, 28(3), 357-361.
[12] Li, H., Lv, Z., & Liu, J. (2013). Assessment of prestress force in bridges using structural dynamic responses under moving vehicles. Mathematical Problems in Engineering, 2013.
[13] Chen, S. Z., Wu, G., Xing, T., & Feng, D. C. (2017). Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors. Smart Materials and Structures, 27(1), 015015.
[14] Eiben, A. E., & Smith, J. E. (2015). What is an evolutionary algorithm?. In Introduction to Evolutionary Computing (pp. 25-48). Springer, Berlin, Heidelberg.
[15] Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. In Introduction to genetic algorithms (pp. 15-37). Springer, Berlin, Heidelberg.
[16] Sahab, M. Gh., (2015). Determination of prestressing force in prestressed concrete beams based on damage detection methods and laboratory validation, 10th International Congress of Civil Engineering, Tabriz, Iran “(In Persian)”.
[17] Pellegrino, C., Zanini, M. A., Faleschini, F., & Corain, L. (2015). Predicting bond formulations for prestressed concrete elements. Engineering Structures, 97, 105-117.
.