1. Cole, D.A., & Lade, P.V. (1984) 'Influence zones in alluvium over dip-slip faults', Journal Geotechnical Engineering, Vol.110(5), pp.599–615.
2. Bray, J. D., Seed, R. B., Cluff, L. S., & Seed, H. B. (1994) 'Earthquake fault rupture propagation through soil', Journal of Geotechnical Engineering, Vol.120(3), pp.543-561.
3. Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R. & El Nahas, A. (2007) 'Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments', Journal of Geotechnical and Geoenvironmental Engineering, Vol.133(8), pp.943-958.
4. Ng, C.W.W., Cai, Q.P., & Hu, P. (2012) 'Centrifuge and Numerical Modeling of Normal Fault-Rupture Propagation in Clay with and without a Preexisting Fracture', Journal of Geotechnical and Geoenvironmental Engineering, Vol.138(12), pp.1492-1502.
5. Ahmadi, M., Moosavi, M., & Jafari, M. K. (2018) 'Intergranular water effects on shear behavior of wet sand: phenomenology based on direct shear tests and fault rupture physical modeling', Bulletin of Earthquake Science and Engineering, Vol.5(1). pp. pp.23-29 (In Persian).
6. Ahmadi, M., Moosavi, M., & Jafari, M. K. (2018) 'Experimental investigation of reverse fault rupture propagation through cohesive granular soils', Geomechanics for Energy and the Environment, Vol.14, pp.61-65.
7. Ahmadi, M., Moosavi, M., & Jafari, M. K. (2018) 'Experimental investigation of reverse fault rupture propagation through wet granular soil', Engineering Geology, Vol.239, pp.229-240.
8. Yao, C., Takemura, J., Guo, W., & Yan, Q. (2020) 'Hyperbolic spiral model for predicting reverse fault ruptures in sand based on centrifuge tests', Geotechnique, https://doi.org/10.1680/jgeot.19.P.063.
9. Bransby, M. F., Davies, M. C. R., & Nahas, A. E. (2008) 'Centrifuge modelling of normal fault–foundation interaction', Bulletin of Earthquake Engineering, Vol.6(4), pp.585-605.
10. Ahmed, W., & Bransby, M. F. (2009) 'Interaction of shallow foundations with reverse faults Journal of Geotechnical and Geoenvironmental Engineering, Vol.135(7), pp.914-924.
11. Mousavi, S., Jafari, M. K., Kamalian, M., & Shafiei, A. (2010) Experimental investigation of reverse fault rupture-rigid shallow foundation interaction', International Journal of Civil Engineering, Vol.8(2), pp.85-98.
12. Anastasopoulos, I., Antonakos, G., & Gazetas, G. (2010) 'Slab foundation subjected to thrust faulting in dry sand: Parametric analysis and simplified design method', Soil Dynamics and Earthquake Engineering, Vol.30(10), pp.912-924.
13. Baziar, M. H., Nabizadeh, A., Lee, C. J., & Hung, W. Y. (2014) 'Centrifuge modeling of interaction between reverse faulting and tunnel', Soil Dynamics and Earthquake Engineering, Vol.65, pp.151-164.
14. Ashtiani, M., Ghalandarzadeh, A., & Towhata, I. (2015) 'Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture', Canadian Geotechnical Journal, Vol.53(3), pp.505-519.
15. Fadaee, M., Hashemi, K., Farzaneganpour, F., Anastasopoulos, I., & Gazetas, G. (2020) '3–storey building subjected to reverse faulting: Analysis and experiments', Soil Dynamics and Earthquake Engineering, Vol.138, https://doi.org/10.1016/j.soildyn.2020.106297.
16. Sabbagh, M., & Ghalandarzadeh, A. (2020) 'Centrifugal modeling of continuous shallow tunnels at active normal faults intersection', Transportation Geotechnics, Vol.22, https://doi.org/10.1016/j.trgeo.2020.100325.
17. Fadaee, M., Ezzatyazdi, P., Anastasopoulos, I., & Gazetas, G. (2016) 'Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design implications', Soil Dynamics and Earthquake Engineering, Vol.89, pp.248-261.
18. Ashtiani, M., Ghalandarzadeh, A., Mahdavi, M., & Hedayati, M. (2018) 'Centrifuge modeling of geotechnical mitigation measures for shallow foundations subjected to reverse faulting', Canadian Geotechnical Journal, Vol.55(8), pp.1130-1143.
19. Loli, M., Kourkoulis, R., & Gazetas, G. (2018), 'Physical and numerical modeling of hybrid foundations to mitigate seismic fault rupture effects', Journal of Geotechnical and Geoenvironmental Engineering, Vol.144(11), 04018083.
20. Sadra, V., Ghalandarzadeh, A., & Ashtiani, M. (2020) 'Use of a trench adjacent to a shallow foundation as a mitigation measure for hazards associated with reverse faulting', Acta Geotechnica, Vol.15, pp.3167–3182.
21. Yao, C., Yan, Q., Sun, M., Dong, W., & Guo, D. (2020) 'Rigid diaphragm wall with a relief shelf to mitigate the deformations of soil and shallow foundations subjected to normal faulting', Soil Dynamics and Earthquake Engineering, Vol.137, https://doi.org/10.1016/j.soildyn.2020.106264.
22. Fadaee, M., Farzaneganpour, F., & Anastasopoulos, I. (2020) 'Response of buried pipeline subjected to reverse faulting', Soil Dynamics and Earthquake Engineering, Vol.132, https://doi.org/10.1016/j.soildyn.2020.106090.
23. Anastasopoulos I., Callerio A., Bransby M.F., Davies M.C.R., El Nahas A., Faccioli E., Gazetas G., Masella A., Paolucci R., Pecker A., and Rossignol E. (2008) 'Numerical analyses of fault–foundation interaction', Bulletin of Earthquake Engineering, Vol.6, pp.645–675.
24. Loukidis D., Bouckovalas G.D. and Papadimitriou A.G. (2009) 'Analysis of fault rupture propagation through uniform soil cover', Soil Dynamics and Earthquake Engineering, Vol.29, pp.1389–1404.
25. Chang, Y. Y., Lee, C. J., Huang, W. C., Hung, W. Y., Huang, W. J., Lin, M. L., & Chen, Y. H. (2015) 'Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand', Engineering Geology, Vol.184, pp.52-70.
26. Naeij, M., & Soroush, A. (2020) 'Comprehensive 3D numerical study on interaction between structure and dip-slip faulting', Soil Dynamics and Earthquake Engineering, Vol.140, pp.106285.
27. Hazeghian, M., Soroush, M. (2015) 'DEM simulation of reverse faulting through sands with the aid of GPU computing', Computers and Geotechnics, Vol.66, pp.253-263.