[1] J. W. Tester et al., “The future of geothermal energy,” Massachusetts Inst. Technol., vol. 358, 2006.
[2] P. Valkó and M. J. Economides, Hydraulic fracture mechanics, vol. 28. Wiley Chichester, 1995.
[3] H. Fatahi, M. M. Hossain, and M. Sarmadivaleh, “Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture,” J. Nat. Gas Sci. Eng., vol. 37, pp. 409–424, 2017, doi: https://doi.org/10.1016/j.jngse.2016.11.054.
[4] J. Zhou, L. Zhang, Z. Pan, and Z. Han, “Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model,” J. Nat. Gas Sci. Eng., vol. 46, pp. 592–602, 2017, doi: https://doi.org/10.1016/j.jngse.2017.07.030.
[5] Y. Zhang et al., “An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite,” Renew. Energy, vol. 140, pp. 615–624, 2019, doi: https://doi.org/10.1016/j.renene.2019.03.096.
[6] T. Ishida, Q. Chen, Y. Mizuta, and J.-C. Roegiers, “Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism ,” J. Energy Resour. Technol., vol. 126, no. 3, pp. 190–200, 2004, doi: 10.1115/1.1791651.
[7] L. Zhuang, K. Y. Kim, S. G. Jung, M. Diaz, and K.-B. Min, “Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite,” Rock Mech. Rock Eng., vol. 52, no. 2, pp. 575–589, 2019.
[8] D. O. Potyondy, “The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions,” Geosystem Eng., vol. 18, no. 1, pp. 1–28, 2015, doi: 10.1080/12269328.2014.998346.
[9] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies,” Géotechnique, vol. 29, no. 1, pp. 47–65, 1979, doi: 10.1680/geot.1979.29.1.47.
[10] D. Potyondy, A flat-jointed bonded-particle material for hard rock, vol. 3. 2012.
[11] D. O. Potyondy, “A Flat-Jointed Bonded-Particle Model for Rock,” 2018, vol. All Days.
[12] P. Wang, M. Cai, and F. Ren, “Anisotropy and directionality of tensile behaviours of a jointed rock mass subjected to numerical Brazilian tests,” Tunn. Undergr. Sp. Technol., vol. 73, pp. 139–153, 2018.
[13] S. Kahraman, “Evaluation of simple methods for assessing the uniaxial compressive strength of rock,” Int. J. Rock Mech. Min. Sci., vol. 38, no. 7, pp. 981–994, 2001, doi: https://doi.org/10.1016/S1365-1609(01)00039-9.
[14] C. Fairhurst, “On the validity of the ‘Brazilian’test for brittle materials,” in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1964, vol. 1, no. 4, pp. 535–546.