1- A.R. Bagherieh, A. FarsijanI, (2016). ”Consolidation Behavior of collapsible clay soils in saturated and unsaturated conditions” , Sharif Civil Engineering Journal, pp 43-54(in persia)
2- Sheng, D. (2011). Review of fundamental principles in modeling unsaturated soil behavior", Journal of Computers and Geotechnics, 38(6), pp. 757-776.
3- Zheng, Z., Li, X., Wang, L., Li, L., Shi, J., & Bi, M. (2021). A new approach to evaluation of loess collapsibility based on quantitative analyses of colloid-clay coating with statistical methods. Engineering Geology, 288, 106167. https://doi.org/https://doi.org/10.1016/j.enggeo.2021.106167
4- Wang, J., Zhang, D., Chen, C., & Wang, S. (2020). Measurement and modelling of stress-dependent water permeability of collapsible loess in China. Engineering Geology, 266, 105393. https://doi.org/https://doi.org/10.1016/j.enggeo.2019.105393
5- Bagherien. A. R, Farsijani. A, Farpour. R, (2017). Comparison of stress variables performance in predicting the shear strength of unsaturated soils. Modares Civil Engineering Journal. (17) , 13-27.
6- Bagherien. A. R, Farpour. R, Farsijani. A, (2017). The collapse and creep behaviour of kaolin with double porosity structure. Modares Civil Engineering Journal. (16), 11-20.
7- Bagherien. A. R, Farsijani. A, The effect of moisture content on the shear strength parameters of plastic fine soils, . Modares Civil Engineering Journal.(3), 31-41.(in Persia)
8- Bagherieh, A. R., Khalili, N., Habibagahi, G., & Ghahramani, A. (2009). Drying response and effective stress in a double porosity aggregated soil. Engineering Geology. https://doi.org/10.1109/TNET.2015.2504603
9- Y., Pasha. A., Arman, Khoshghalb., & Nasser, K. (2017). Hysteretic Model for the Evolution of Water Retention Curve with Void Ratio. Journal of Engineering Mechanics, 143(7), 4017030. https://doi.org/10.1061/(ASCE)EM.19437889.0001238
10- Pasha, A., Khoshghalb, A., & Khalili, N. (2020). Evolution of isochoric water retention curve with void ratio. Computers and Geotechnics, 122, 103536. https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103536
11- Zhou, A., Fan, Y., Cheng, J. W., & Zhang, J. (2019). A Fractal Model to Interpret Porosity-Dependent Hydraulic Properties for Unsaturated Soils. Advances in Civil Engineering, 2019, 1–13. https://doi.org/10.1155/2019/3965803
12- Ashour, M., Abbas, A., Altahrany, A., & Alaaeldin, A. (2020). Modelling the behavior of inundated collapsible soils. Engineering Reports, e12156. doi:10.1002/eng2.12156
13- Fredlund, D. G., & Gan, J. K.-M. (1995). The Collapse Mechanism of a Soil Subjected to One-Dimensional Loading and Wetting. Genesis and Properties of Collapsible Soils, 173–205. doi:10.1007/978-94-011-0097-7_9
14- AR Bagherieh, M Baharvand, M Meidani, A(2019) Mahboobi -Prediction of wetting-induced swelling using effective stress in an unsaturated kaolin Iranian Journal of Science and Technology
15- Sadeghabadi, A., Noorzad, A. & Zad, A. An Extension to Barcelona Basic Model Predicting the Behavior of Unsaturated Soils. Transp. Infrastruct. Geotech. (2021). https://doi.org/10.1007/s40515-021-00159-6
16- Garakani, A. A., Haeri, S. M., Khosravi, A., & Habibagahi, G. (2015). Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions. Engineering Geology, 195, 28–41. https://doi.org/https://doi.org/10.1016/j.enggeo.2015.05.026
17- Maleki, M., & Bayat, M. (2012). Experimental evaluation of mechanical behavior of unsaturated silty sand under constant water content condition. Engineering Geology, 141–142, 45–56. https://doi.org/https://doi.org/10.1016/j.enggeo.2012.04.014
18- Ghasemzadeh, H., & Akbari, F. (2019). Determining the bearing capacity factor due to nonlinear matric suction distribution in the soil. Canadian Journal of Soil Science, 99(4), 434–446. https://doi.org/10.1139/cjss-2019-0071
19- Fernando A. M. Marinho and Orlando M. Oliveira. (2005), The Filter Paper Method Revisited, Geotechnical Testing Journal, Vol. 29, No. 3,Paper ID GTJ14125
20- Bishop A. W(1959), "The principle of effective stress", Teknisk Ukeblad 106, pp 859-863.
21- Khalili, N., Khabaz, M. H., (1998)"A unique relationship for χ for the determination of the shera strength of unsaturated soils"; Journal of Geotechnique 48, No. 5, pp. 681-687.
22- Yan FR, W Fan, TY He, (2013) “Study on Binary-Medium Model of fissured loess”, Applied Mechanics and Materials, , (256- 59), 240-244.
23- Ouria. A, Ranjbarnia. M, vaezipour. D,(2018) A Failure Criterion for Weak Cemented Soils. Journal of Civil and Environmental Engineering 48 (92), 13-21
24- Sun, D., Sheng, D., Xu, Y., (2007). Collapse behaviour of unsaturated compacted soil with different initial densities. Can. Geotech. J. 44, 673–686. https://doi.org/10.1139/T07-023
25- Brink, G., and Heymann, G. (2014). “Soil collapse from an effective stress perspective.” Journal of theSouth African Institution of Civil Engineering, 56(3), 30–33.
26- Albadri, W. M., Jamaludin, M., and Alhani. I.,(2020). A new practical modification to the pressure plate extractor for measuring the wetting protion of SWCC. Austalian Geomechanics Journal. Vol 55. Number 2
27- Leong, E., Tripathy, S., & Rahardjo, H. (2004). A Modified Pressure Plate Apparatus. Geotechnical Testing Journal, 27, 322–331. https://doi.org/10.1520/GTJ11053
28- R., H. L., P., T., & J., P. A. (2021). A Modified Pressure Plate Device for SWCC Testing Under Anisotropic Stress States. In Unsaturated Soils 2006 (pp. 1753–1763). https://doi.org/doi:10.1061/40802(189)147
29- Khalili, N., Geiser, F., and Blight, G. E. (2004). “Effective stress in unsaturated soils: Review with new 414 evidence.” International Journal of Geomechanics, 4(2), 115–126.
30- Sun, D.A., Matsuoka, H., Xu, Y.F., 2004. Collapse behavior of compacted clays in suction-controlled triaxial tests. Geotech. Test. J. 27, 362–370. https://doi.org/10.1520/gtj11418
31- Pereira J.F.H., Fredlund D.G., 2000. Volume Change Behavior of Collapsible Compacted Gneiss Soil. J. Geotech. Geoenvironmental Eng. 126, 907–916. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:10(907)
32- Desai, C.S., 2000a. Mechanics of Materials and Interfaces: The Disturbed State Concept, CRC. Boca Raton, FL.
33- Ouria, A., 2017. Disturbed state concept-based constitutive model for structured soils. International Journal of Geomechanics 17(7):04017008, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000883
34- Ouria, A., Behboodi, T., 2017. Compressibility of Cement Treated Soft Soils. Journal of Civil and Environmental Engineering 47 (86), 1-9.
35- Ouria, A., Desai, C.S., Toufigh, V., 2015. Disturbed state concept-based solution for consolidation of plastic clays under cyclic loading. International Journal of Geomechanics 15(1):04014039, DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000336
36- Mirzaii, A., Yasrobi, S. S., & Hefzi, E. (2020). Critical state behaviour of an unsaturated clayey sand along constant water content direct shear and triaxial loading conditions. International Journal of Geotechnical Engineering, 14(3), 286–294. https://doi.org/10.1080/19386362.2018.1438151
37- Sadeghzadegan, R., Naeini, S. A., & Mirzaii, A. (2020). Effect of clay content on the small and mid to large strain shear modulus of an unsaturated sand. European Journal of Environmental and Civil Engineering, 24(5), 631–649. https://doi.org/10.1080/19648189.2017.1415169