[1] Aramini, R., 2007. On some open problems in the implementation of the linear sampling method, edition, Ph.D. Thesis, University of Trento.
[2] Aramini, R., 2011. Computational inverse scattering via qualitative methods, edition, Ph.D. Thesis, University of Trento.
[3] Cakoni, F.,Colton, D., 2006. Qualitative methods in inverse scattering theory, Springer-Verlag: Berlin, NY.
[4] Cakoni, F., Colton, D.,Monk, P., 2011. The linear sampling method in inverse electromagnetic scattering, SIAM.
[5] Kirsch, A.,Grinberg, N., 2008. The factorization method for inverse problems, 1 edition, Oxford University Press: USA.
[6] Charalambopoulos, A.,Anagnostopoulos, K. A., 2008. On the spectrum of the interior transmission problem in isotropic elasticity. Journal of Elasticity, vol. 90, pp. 295–313.
[7] Potthast, R., 2001. Point sources and multipoles in inverse scattering theory, 1 edition, Taylor & Francis Group: NewYork.
[8] Erhard, K.,Potthast, R., 2006. A numerical study of the probe method. SIAM Journal on Applied Mathematics, vol. 28, pp. 1597–1612.
[9] Bonnet, M., 1995. BIE and material differentiation applied to the formulation of obstacle inverse problems. Engineering Analysis with Boundary Elements, vol. 15, no. 2, pp. 121-136.
[10] Bellis, C.,Bonnet, M., 2010. A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data. International Journal of Solids and Structures, vol. 47, pp. 1221–1242.
[11] Arens, T., 2001. Linear sampling methods for 2D inverse elastic wave scattering. Inverse Problems, vol. 17, no. 5, pp. 1445–1464.
[12] Charalambopoulos, A., Gintides, D.,Kiriaki, K., 2002. The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Problems, vol. 18, pp. 547–558.
[13] Nintcheu Fata , S.,Guzina, B. B., 2004. A linear sampling method for near field inverse problems in elastodynamics. Inverse Problems, vol. 20, no. 3, pp. 713-736.
[14] Nintcheu Fata, S.,Guzina, B. B., 2007. Elastic scatterer reconstruction via the adjoint sampling method. SIAM Journal on Applied Mathematics, vol. 67, no. 5, pp. 1330–1352.
[15] Guzina, B. B.,Madyarov, A. I., 2006. A linear sampling approach to inverse elastic scattering in piecewise homogeneous domains. Inverse Problems, vol. 23, no. 4, pp. 1467-1493.
[16] Dehghan Manshadi, S.H., Khaji, N. and Rahimian, M., 2014. Cavity/inclusion detection in plane linear elastic bodies using linear sampling method. Journal of Nondestructive Evaluation, 33(1), pp.93-103.
[17] Dehghan Manshadi, S.H. and Khaji, N., 2014. Cavity detection in a heat conductor using linear sampling method. Heat and Mass Transfer, 50(7), pp.973-984.
[18] Khaji, N. and Dehghan Manshadi, S.H., 2015. Time domain linear sampling method for qualitative identification of buried cavities from elastodynamic over-determined boundary data. Computers & Structures, 153, pp.36-48.
[19] K.F. Graff, Wave Motion in Elastic Solids, Dover, New York, 1991.
[20] J. D Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam ,1984.
[21] Khaji N, Habibi M, Mirhashemian P. Modeling transient elastodynamic problems using spectral element method. Asian J Civil Eng 2009;10:361–80.
[22] Dehghan Manshadi, S.H., Dehghan Manshadi, S.M., Amiri, H.R. and Hamzehei Javaran, S., 2018. Flaw identification for Laplace equation using the linear sampling method. Mathematics and Mechanics of Solids, 23(8), pp.1225-1236.