بررسی و مقایسه آزمایشگاهی مقاومت بیرون کشش ژئوگرید و گریدانکر در خاک دانه ای

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه شهید باهنر کرمان
چکیده
در دهه­های اخیر، مطالعات زیادی بر روی انواع ژئوسنتتیک­ها و عملکرد آن­ها انجام شده است. در این تحقیق به بررسی رفتار اندرکنش خاک با ژئوسنتتیک گریدانکر( به­عنوان ژئوسنتتیک سه­بعدی)­، تاثیر پارامتر­های مختلف و مقایسه عملکرد آن­ با ژئوگرید(به­عنوان ژئوسنتتیک دو­بعدی) پرداخته­شده­است. باتوجه به پارامترهای درنظرگرفته شده به عنوان متغیر برای هرنوع سیستم مسلح کننده (مانند ابعاد چشمه و مقاومت کششی برای ژئوگرید، زاویه اتصال انکر و فاصله انکر برای گریدانکر) 50 آزمایش بیرون کشش برروی نمونه­­ها انجام شده است.

نتایج نشان داد که استفاده از گریدانکر برای افزایش نیروی بیرون­کشش بستر نسبت به ژئوگرید تاثیر قابل توجهی دارد. تاثیر پارامترهای تنش نرمال، زاویه نصب انکر و فاصله انکر­ها از یکدیگر برعملکرد گریدانکر بررسی شده­است و مقادیر بهینه ای پیشنهادشده­است. به­طورکلی استفاده از ژئوسنتتیک سه­بعدی در تنش­های نرمال و جابجایی پایین عملکرد بهتری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

investigation and experimental comparison of geogrid and gridanchor pullout resitance for sandy soil

نویسندگان English

aliyeh labib
Mohammad Hossein Bgheripour
shahid bahonar university of kerman
چکیده English

Investigation and experimental comparison of geogrid and gridanchor pullout resitance for sandy soil

Aliyeh Labib1, Mohammad Hossein Bagheripour2

1- Masterchr('39')s degree, Geotechnical Engineering, Civil Engineering Group, Faculty of Engineering, Shahid Bahonar University, Kerman, al.labib610@gmail.com.

2- Professor, Civil Engineering Group, Faculty of Engineering, Shahid Bahonar University, Kerman, bagheri@uk.ac.ir.

Abstract:

Construction on problematic soils, such as soft soils, is usually associated with numerous difficulties. Soil improvement is one of the available solution to encounter the problem in which the geotechnical conditions and the soilchr('39')s material properties are essentially improved. Reinforcement of soil is usually carried with aim increasing soilchr('39')s shear strength and reducing the erosion and/or settlement, permeability control and etc... .

Geosynthetics are made of the polymer materials which are used as reinforcement in geotechnical projects. Geosynthetics, depending on their application, have different types, which can be referred to as geotextile, geogrid, geonet, geomesh, geomembrane, geocell, geocomposite. Considering the mechanical and hydraulic properties of the geosynthetics, they are used in various fields. The suitable design and use of these materials leads usually to significant increase in the factor of safety, performance improvement, and cost reduction in projects when compared with other classical solution.

In recent decades, extensive studies have been conducted on the types of Geosynthetics and their function. On the 3D geosynthetics, however, deep studies are of few. In this study, the soil interaction with gridanchor as 3D geosynthetic (G-A) and the effect of various parameters (transverse distance of anchors from each other, joint angle of anchor to the geogrid relative to the horizon, aperture size and normal steress) for gridanchor has been investigated. Also, their performance has been compared with geogrids as 2D geosynthetics (G). In geogrids, the aperture size of geogrid, tensile strength of the samples and normal steress are considered as variables. The Pull out test is considered as the basic experiment to approach the goals of the current studies. According to the variables considered for each type of reinforcement systems, 50 pullout tests have been performed on the samples. Of these, 13 tests were performed as observational tests to ensure the accuracy of the test results. The soil used in this study is poorly graded sand (SP). Gridanchor is a type of geosynthetics that was first used by Mosallanezhad et al. In 2008.

The results outcome of tests indicate that the use of Gridanchor and compared with geogrid has a significant effect on increasing the reinforced substratechr('39')s pullout load. The effect of normal stress parameters, anchor installation angle and anchor distance from each other on the performance of the gridanchor has been investigated and optimal values have been proposed. If using geogrid in high normal stress, it is better to use geogrid with higher tensile strength. So that if a grid anchor is used in high stresses, it is better that the distance of the anchors from each other is greater than their distance in low stresses. Generally, the use of three-dimensional geosynthetics performs better at normal stresses and low displacement.

Keywords: Geosynthetic, Geogrid, Gridanchor, Pullout test, Reinforcement.

کلیدواژه‌ها English

Geosynthetic
Geogrid
Gridanchor
Pullout test
Reinforcement
[1] Yang, X., Han, J., Pokharel, S. K., Manandhar, C., Parsons, R. L., Leshchinsky, D., & Halahmi, I. (2012). Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases. Geotextiles and Geomembranes, 32, 95-103.
[2] ASTMD 6706-1, “Standard Test Method for Measuring Geosynthetic Pullout Resistance in Soil ,” Vol. 7, No. October, pp. 1–7, 2001.
[3] Palmeira, E. M. (2009). Soil–geosynthetic interaction: Modelling and analysis. Geotextiles and Geomembranes, 27(5), 368-390.
[4] Farrag, K., Acar, Y. B., & Juran, I. (1993). Pull-out resistance of geogrid reinforcements. Geotextiles and Geomembranes, 12(2), 133-159.
[5] Sugimoto, M., Alagiyawanna, A. M. N., & Kadoguchi, K. (2001). Influence of rigid and flexible face on geogrid pullout tests. Geotextiles and Geomembranes, 19(5), 257-277.
[6] Moraci, N., Cardile, G., Gioffrè, D., Mandaglio, M. C., Calvarano, L. S., & Carbone, L. (2014). Soil geosynthetic interaction: design parameters from experimental and theoretical analysis. Transportation Infrastructure Geotechnology, 1(2), 165-227.
[7] Mosallanezhad, M., Bazyar, M. H., & Saboor, M. H. (2015). Novel strip-anchor for pull-out resistance in cohesionless soils. Measurement, 62, 187-196.
[8] Toufigh, V., Saeid, F., Toufigh, V., Ouria, A., Desai, C. S., & Saadatmanesh, H. (2014). Laboratory study of soil-CFRP interaction using pull-out test. Geomechanics and Geoengineering, 9(3), 208-214.
[9] Toufigh, V., Desai, C. S., Saadatmanesh, H., Toufigh, V., Ahmari, S., & Kabiri, E. (2014). Constitutive modeling and testing of interface between backfill soil and fiber-reinforced polymer. International Journal of Geomechanics, 14(3), 04014009.
[10] Toufigh, V., Ouria, A., Desai, C. S., Javid, N., Toufigh, V., & Saadatmanesh, H. (2016). Interface behavior between carbon-fiber polymer and sand. Journal of Testing and Evaluation, 44(1), 385-390.
[11] Ouria, A., Toufigh, V., Desai, C., Toufigh, V. and saadatmanesh, H., “Finite element analysis of a CFRP reinforced retaining wall,” Vol. 10, pp. 757–774, 2016.
[12] Boushehrian, A. H., Hataf, N., & Ghahramani, A. (2011). Modeling of the cyclic behavior of shallow foundations resting on geomesh and grid-anchor reinforced sand. Geotextiles and Geomembranes, 29(3), 242-248.
[13] Mosallanezhad, M., Hataf, N., & Ghahramani, A. (2008). Experimental study of bearing capacity of granular soils, reinforced with innovative grid-anchor system. Geotechnical and Geological Engineering, 26(3), 299-312.
[14] Alamshahi, S., & Hataf, N. (2009). Bearing capacity of strip footings on sand slopes reinforced with geogrid and grid-anchor. Geotextiles and Geomembranes, 27(3), 217-226.
[15] Hataf, N., & Sadr, A. (2009, October). Pull-out behavior of an innovative grid-anchor system. In Proce. 17th Conf. on Soil Mechanics and Geotechnical Engineering (ICSMGE), Alexandrina, Egypt. pp (pp. 909-912).
[16] Mosallanezhad, M., Taghavi, S. S., Hataf, N., & Alfaro, M. C. (2016). Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions. Geotextiles and Geomembranes, 44(1), 70-80.
[17] ASTM D422-63, “Standard Test Method for Particle-Size Analysis of Soils ,” Vol. 63, pp. 1–8, 2007.
[18] ASTM D854-14, “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer ,” No. May, 2014.
[19] ASTM D3080, “Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained,” , 2011.
[20] ASTM D4254, “Standard Test Method for Minimum Index Density and Unit Weight of Soil and Calculation of Relative Density ,” , 2016.
[21] ASTM D6637, “Standard Test Method for Determinig Tensile Propertise of Geogrids by
[22] Jewell, R., Milligan, G., Sarsby, R. W., & Dubois, D. (1985). Interaction Between Soil And Geogrids. Polymer Grid Reinforcement: Proceedings of a conference sponsored by the science and engineering research counc
[23] Ochiai, H., Otani, J., Hayashic, S., & Hirai, T. (1996). The pull-out resistance of geogrids in reinforced soil. Geotextiles and Geomembranes, 14(1), 19-42.