1. Odgaard A.J. & Kennedy J.F. 1983. River-Bend Bank Protection by Submerged Vanes. Journal of Hydraulic Engineering, 109(8), pp.1161-1173. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:8(1161)
2. Lauchlan CS. 1999. Pier scour countermeasures Ph.D. Thesis. University of Auckland. New Zealand.
3. Johnson P.A. Hey R.D. Tessier M. & Rosgen DL. 2001. Use of vanes for control of scour at vertical wall abutments, Journal of Hydraulic Engineering, ASCE, 127(9), pp.772-778. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:9(772)
4. Vaghefi M. Safaripour N. Zarei E. Mahmoudi A. & Hashemi S.Sh. 2018. Experimental investigation on the effect of overlapping upstream submerged vanes on bend topography with a bridge pier. Modares Civil Engineering Journal (M.C.E.J), 15(2), pp.245-255. "(In Persian)"
5. Zarei E. Vaghefi M. & Hashemi. S.Sh. 2019. Bed topography variations in bend by simultaneous installation of submerged vanes and single bridge pier. Arabian Journal of Geosciences, 12(6), pp.1-10. https://doi.org/10.1007/s12517-019-4342-z
6. Safaripour N. Vaghefi M. & Mahmoudi. A 2020. Experimental Study of the Effect of Submergence Ratio of Double Submerged Vanes on Topography Alterations and Temporal Evaluation of the Maximum Scour in a 180-Degree Bend with a Bridge Pier Group. International Journal of River Basin Management, pp.1-34. https://doi.org/10.1080/15715124.2020.1837144
7. Giri S. Shimizu Y. & Surajata B. 2004. Laboratory measurement and numerical simulation of flow and turbulence in a meandering-like flume with spurs. Flow Measurement and Instrumentation, 15(5-6), pp.301-309. https://doi.org/10.1016/j.flowmeasinst.2004.05.002
8. Naji Abhari M. Ghodsian, M. Vaghefi, M. & Panahpur, N. 2010. Experimental and numerical simulation of flow in a 90-degree bend. Flow Measurement and Instrumentation, 21(3), pp.292-298. https://doi.org/10.1016/j.flowmeasinst.2010.03.002
9. Kasvi E. Laamanen L. Lotsari, E. & Alho P. 2017. Flow patterns and morphological changes in a sandy meander bend during a Flood-Spatially and temporally intensive ADCP measurement approach. Water, 9(2), pp.106. https://doi.org/10.3390/w9020106
10. Akbari M. Vaghefi, M. & Chiew, Y. M. 2021. Effect of T-shaped spur dike length on mean flow characteristics along a 180-degree sharp bend. Journal of Hydrology and Hydromechanics, 69(1), pp.98-107. DOI: https://doi.org/10.2478/johh-2020-0045
11. Wilson C.A.M.E., Boxall J. B. Guymer I. & Olsen N. R. B. 2003. Validation of a three dimensional numerical code in the simulation of pseudo-natural meandering flows. Journal of Hydraulic Engineering, ASCE, 129(10), 758-767. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:10(758)
12. Ghobadian R. & Mohammadi K. 2011. Simulation of subcritical flow pattern in 180 uniform and convergent open-channel bends using SSIIM 3-D model. Water Science and Engineering, 4(3), pp.270-283. https://doi.org/10.3882/j.issn.1674-2370.2011.03.004
13. Nekoufar K. & Kouhpari H. 2013. Control and Decrease the Scouring of Bridge Pier by Method of Non-Submerged Plates Using SSIIM Software. Acta Technica Corviniensis-Bulletin of Engineering, 6(4), pp.35.
14. Ehteram M Mahdavi Meymand A. 2015. Numerical modeling of scour depth at side piers of the bridge. Journal of Computational and Applied Mathematics, 280, pp.68–79. https://doi.org/10.1016/j.cam.2014.11.039
15. Asadollahi M. Vaghefi, M & Tabibnejad Motlagh M.J 2019. Experimental and Numerical Comparison of Flow and scour Patterns around a Single and Triple Bridge Piers Located at a sharp 180 degrees Bend. Scientia Iranica. doi:10.24200/SCI.2019.5637.1391
16. Rasaei M. Nazari S. & Eslamian, S. 2020. Experimental and numerical investigation the effect of pier position on local scouring around bridge pier at a 90° convergent bend. Journal of Hydraulic Structures, 6(1), pp.55-76. doi: 10.22055/JHS.2020.32753.1134
17. Asadollahi M. Vaghefi, M & Akbari M. 2020. Effect of the position of perpendicular pier groups in a sharp bend on flow and scour patterns: numerical simulation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), pp.1-15. https://doi.org/10.1007/s40430-020-02503-2
18. Olsen N.R.B. 2014. A three-dimensional numerical model for simulation of sediment movement in water intakes with multi-block option, Department of Hydraulic and environmental Engineering, Norwegian University of Science and Technology, User's manual, Norway, pp.172-173.
19. Abdi Chooplou Ch. Vaghefi M. & Meraji S.H. 2018. Study of Streamlines under the Influence of Displacement of Submerged Vanes in Channel Width, and at the Upstream Area of a Cylindrical Bridge Pier in a 180 Degree Sharp Bend. Journal of Hydraulic Structures, 4(1), pp.55-74. doi: 10.22055/JHS
20. Shukry A. 1950. Flow around Bends in an open Flume. Transactions of the American Society of Civil Engineers, 115(1), pp.751-779. https://doi.org/10.1061/TACEAT.0006426
21. Barbhuiya A.K. & Dey S. 2003. Measurement of turbulent flow field at a vertical semicircular cylinder attached to the sidewall of a rectangular channel, Journal of Flow Measurement and Instrumentation, 15(2), pp.87-96.
https://doi.org/10.1016/j.flowmeasinst.2003.11.002