1. Comité euro-international du béton, 1996. RC elements under cyclic loading: state of the art report (Vol. 230). Thomas Telford.
2. Maitra, S.R., Reddy, K.S. and Ramachandra, L.S., 2009. Load transfer characteristics of dowel bar system in jointed concrete pavement. Journal of Transportation Engineering, 135(11), pp.813-821.
3. Timoshenko, S., 1925. Applied elasticity .Westinghouse Tech. Night Press.
4. Moradi, A., 2013. A universal constitutive model for simulate stress transfer across RC cracks and interfaces under cyclic multiaxial deformations. Tarbiat Modares University: Tehran.(In Persian)
5. Walraven, J.C. and Reinhardt, H.W., 1981. Concrete mechanics. Part A: Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading. STIN, 82, p.25417.
6. Paulay, T., Park, R. and Phillips, M.H., 1974. Horizontal construction joints in cast-in-place reinforced concrete. Special Publication, 42, pp.599-616.
7. Finney, E.A., 1956. Structural design considerations for pavement joints. Journal of the American Concrete Institute, 28(1), pp.1-28.
8. Soroushian, P., Obaseki, K., Rojas, M.C. and Sim, J., 1986, July. Analysis of dowel bars acting against concrete core. In Journal Proceedings (Vol. 83, No. 4, pp. 642-649).
9. Soroushian, P., Obaseki, K. and Rojas, M.C., 1987. Bearing strength and stiffness of concrete under reinforcing bars. Materials Journal, 84(3), pp.179-184.
10. Dei Poli, S., Di Prisco, M. and Gambarova, P.G., 1992. Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete. structural Journal, 89(6), pp.665-675.
11. Soltani, M. and Maekawa, K., 2008. Path-dependent mechanical model for deformed reinforcing bars at RC interface under coupled cyclic shear and pullout tension. Engineering structures, 30(4), pp.1079-1091.
12. Dulacska, H., 1972, December. Dowel action of reinforcement crossing cracks in concrete. In Journal Proceedings (Vol. 69, No. 12, pp. 754-757).
13. Moradi, A.R., Soltani, M. and Tasnimi, A.A., 2012. A simplified constitutive model for dowel action across RC cracks. Journal of advanced concrete technology, 10(8), pp.264-277.
14. Moradi, A.R., Soltani, M. and Tasnimi, A.A., 2015. Stress-transfer behavior of reinforced concrete cracks and interfaces. ACI Structural Journal, 112(1), p.69.
15. Maekawa, K. and Qureshi, J., 1996. Embedded bar behavior in concrete under combined axial pullout and transverse displacement. Doboku Gakkai Ronbunshu, 1996(532), pp.183-195.
16. Maekawa, K. and Qureshi, J., 1996. Computational model for reinforcing bar embedded in concrete under combined axial pullout and transverse displacement. Doboku Gakkai Ronbunshu, 1996(538), pp.227-239.
17. Figueira, D., Sousa, C. and Serra Neves, A., 2018. Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks. Computers and Concrete, 21(5), pp.593-605.
18. Li, P., Tan, N. and Wang, C., 2018. Nonlinear Bond Model for the Dowel Action considering the Fatigue Damage Effect. Advances in Materials Science and Engineering, 2018.
19.Kottari, A., Mavros, M., Murcia-Delso, J. and Shing, P.B., 2017. Interface model for bond-slip and dowel-action behavior. ACI Structural Journal, 114(4), pp.1043-1053.
20.Filatov, V.B., 2018, December. Experimental Investigation Dowel Action of Longitudinal Reinforcement of Reinforced Concrete Beams. In IOP Conference Series: Materials Science and Engineering (Vol. 463, No. 4, p. 042005). IOP Publishing.
21. Rahdar, H.A. and Ghalehnovi, M., 2016. Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar. Computers and Concrete, 18(1), pp.139-154.
22. Pruijssers, A.F., 1990. Aggregate interlock and dowel action under monotonic and cyclic loading.
23. Khazaee, A. and Ghalehnovi, M., 2018. Bearing stiffness of UHPC; an experimental investigation and a comparative study of regression and SVR-ABC models. Journal of Advanced Concrete Technology, 16(3), pp.145-158..
24. Soltani, M., An, X. and Maekawa, K., 2003. Computational model for post cracking analysis of RC membrane elements based on local stress–strain characteristics. Engineering structures, 25(8), pp.993-1007.