بررسی عملکرد قاب فولادی با ورق‌های پرکننده فولادی ومهاربند واگرا تحت بارگذاری فزاینده

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه آزاد اسلامی واحد مراغه
2 دانشگاه ازاد اسلامی مراغه
3 یار گروه مهندسی عمران دانشگاه ازاد اسلامی واحد اذرشهر
چکیده
در مقاله­ی حاضر به بررسی رفتار قاب­های فولادی دارای مهاربند واگرا و صفحات نازک پرکننده پرداخته شده است. هدف اصلی این تحقیق ارائه­ی فرم جدیدی از مهاربند واگرا است، که با اضافه نمودن ورق فولادی نازک زیر تیر پیوند موجب بهبود رفتار لرزه­ای آن می­شود. در مدل پیشنهادی به علت اضافه نمودن ورق­های پرکننده، سختی خمشی و برشی تیر پیوند موجود در قاب مهاربند جوابگوی نیروهای وارد نخواهد بود. از این­رو جهت تأمین سختی و افزایش مقاومت قاب، استفاده از یک ورق فولادی در زیر تیر پیوند متصل به صفحات اتصال مهاربند پیشنهاد شده است. در مدل­های پیشنهادی دو گروه مدل با ورق فولادی زیر تیر پیوند (ورق فولادی میانی) مورد بررسی قرار گرفته است. در گروه اول و دوم تمامی تحلیل­ها از نوع استاتیکی با در نظر گرفتن اثرات غیرخطی هندسی در یک قاب واگرا با ورق­های پرکننده که ارتفاع ورق زیر تیر پیوند (ورق فولادی میانی) به ترتیب برابر 460 و 742 میلی­متر می­باشد. پارامترهای مورد بررسی شامل، ارتفاع ورق میانی، ضخامت ورق میانی و تاثیر آرایش سخت کننده­ها بر عملکرد قاب می­باشد. جهت بررسی عددی رفتار مدل­ها از روش اجزای محدود با استفاده از نرم­افزار Abaqus، به روش بارافزون استفاده شده است. نتایج تحلیل در مدل­ها، شامل: منحنی نیرو- جابه­جایی، زوال سختی، جابجایی برون صفحه دیوار به علت کمانش، انرژی اتلافی غیر کشسان در سازه و توزیع تنش در سازه (کانتور تنش) می­باشند. مطابق نتایج مدل­های عددی ورق فولادی میانی در تامین سختی و افزایش مقاومت سازه از اهمیت بسیار بالایی برخوردار می­باشد. همچنین با افزایش ارتفاع ورق میانی توسعه میدان کششی قطری به داخل ورق پرکننده افزایش می­یابد، در نتیجه می­توان کمانش­های موضعی را به کمانش­های کلی در ورق­های پر کننده تبدیل نمود. در بین آرایش سخت کننده­ها مشاهده شد، سخت کننده زیر ورق میانی کمترین تاثیر در بهبود پاسخ نیرو- جابجایی سازه را دارد و با بررسی مدل­­ها با ورق میانی به ارتفاع 460 میلی­متر، دارای 2 سخت کننده عمودی در مقایسه با مدل 4 سخت کننده ظرفیت سازه (نیرو- جابجایی) در حدود 31% افزایش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of steel Frame with infill plate and eccentric braced under posh over loading

نویسندگان English

ahmah maleki 1
Reza khalilie 2
Ramin Ketabfrooh Badri 3
1 Marageh Branch, Islamic Azad University
2 School of Civil Engineering, Marageh Branch, Islamic Azad University
3 Azarshahr Branch, Islamic Azad University
چکیده English

In the present paper, the behavior of eccentric braced steel frames with thin infill plates is investigated. The main purpose is to provide a new form of eccentric bracing, which improves the seismic behavior by adding a thin steel plate under the link beam. In the proposed model, due to the increase in frame stiffness, flexural stiffness and shear of the beam in the bracing frame will not respond to the forces. Therefore, in order to provide the required stiffness and ductility of the frame, it is suggested to use a steel plate under the link beam connected to the bracing connection plates. In the proposed models, two groups of models with steel plate under the link beam (middle steel plate) have been studied. In the first and second groups, all analysis are of static type, taking into account the geometric nonlinear effects in an eccentric frame with infill plates, the height of the plate under the link beam (middle steel plate) is 460 and 742 mm, respectively. The studied parameters include the height of the middle plate, the thickness of the middle plate and the effect of the arrangement of stiffeners on the performance of the frame. For numerical analysis of the models, the finite element method using Abaqus finite element software with increasing load has been used. Extraction results in the models include force-displacement curve, stiffness decay, amount of wall out of plane displacement due to buckling, inelastic dissipation energy and stress distribution in the structure (stress contour). According to the results of numerical models, the middle steel plate is very important in providing ductility and increasing the strength of the structure. Also, with increasing the height of the middle plate, the development of the diagonal tensile field into the infill plate increases, so local buckling can be converted into general buckling in the infill plates. Among the arrangements of stiffeners, it was observed that the stiffener under the middle plate has the least effect on increasing the force-displacement response of the structure. By evaluation of models with a middle plate with a height of 460 mm and two vertical stiffeners, compared to the model with four stiffeners, the structural capacity (force-displacement) has increased by about 31%. By evaluating the models with a middle plate height of 760 mm, it can be found that the use of stiffeners with different geometric arrangements do not have a major effect on increasing the stiffness in the elastic and inelastic stages, prevent the sudden decrease in stiffness in models without stiffeners due to buckling observed at the junction of the brace to the middle plate. Also, the free edge stiffener of the middle plate has practically no effect on the sudden decrease in stiffness, but on the other hand, vertical stiffeners or a combination of horizontal and vertical stiffeners have performed well in terms of preventing a sudden decrease in structural stiffness. The thickness of the steel plate has a significant effect on increasing the strength and reducing the local buckling in the middle plate. Local buckling was observed at the junction of the middle plate to the brace, which is recommended to use stiffeners for the middle steel to reduce the effects of local buckling of the plate and to prevent a sudden decrease in strength and stiffness. In steel plates with shear behavior that do not allow the complete formation of diagonal tensile fields, stiffeners prevent a sudden decrease in strength but do not have a significant effect on increasing the overall stiffness of the structure.

کلیدواژه‌ها English

Steel frame
Eccentric braced
Steel infill plate
Finite element
Posh over loading
ductility
[1] S. Ghosh, S.B. Kharmale, (2010) Research on Steel
Plate Shear Wall: Past, Present and Future, Structural
Steel and Castings: Shapes and Standards, Properties
an Applications, Nova Science Publishers Inc,
Hauppauge, USA, 2010.
[2] T.M. Roberts, (1995) Seismic resistance of steel plate
shear walls, 17 344–351.
[3] G. Pachideh, M. Gholhaki, A. Saedi, (2019)
Analyzing the damage index of steel plate shear walls
using pushover analysis Analyzing the damage index
of steel plate shear walls using pushover analysis,
Structures. 20 437–451.
doi:10.1016/j.istruc.2019.05.005.
[4] C. Topkaya, C.O. Kurban, (2009) Natural periods of
steel plate shear wall systems, 65 542–551.
doi:10.1016/j.jcsr.2008.03.006.
[5] B. Qu, M. Bruneau, (2010)Behavior of Vertical
Boundary Elements in Steel Plate Shear Walls, 109–
122.
[6] S. Sabouri-Ghomi, S.R.A. Sajjadi, (2012)
Experimental and theoretical studies of steel shear
walls with and without stiffeners, J. Constr. Steel Res.
75 152 159.
[7] R. Sabelli, M. Bruneau, M, (2006) Steel Plate Shear
Walls (AISC Design Guide). American Institute of
Steel Construction, Chicago, Illinois.
[8] S. Jin, J. Bai, (2018)Experimental investigation of
buckling-restrained steel plate shear walls with
inclined-slots, J. Constr. Steel Res. 155 144–156.
doi:10.1016/j.jcsr.2018.12.021.
[9] A. Farzampour, J.A. Laman, (2015) Behavior
prediction of corrugated steel plate shear walls with
openings, JCSR. 114 258–268.
doi:10.1016/j.jcsr.2015.07.018.
[10] W. Meng, Y. Weiguo, S. Yongjiu, X. Jian,
(2015)Seismic behaviors of steel plate shear wall
structures with construction details and materials, 107
194–210. doi:10.1016/j.jcsr.2015.01.007.
[11] M. Dastfan, A.M. Asce, R. Driver, M. Asce, (2018)
Test of a Steel Plate Shear Wall with Partially
Encased Composite Columns and RBS Frame
Connections, 144 1–9. doi:10.1061/(ASCE)ST.1943-
541X.0001954.
[12] H. Reza, P. Beiranvand, M. Pouraminian, (2018) Case
Studies in Construction Materials Examining the
impact of plate placement and changes in waves
characteristics on behavior of wavy steel shear wall,
9. doi:10.1016/j.cscm.2018.e00180.
[13] P. Engineer, (2010)SEISMIC PERFORMANCE OF
A 55-STOREY STEEL PLATE, 165 139–165.
[14] J.M. Babaso, G.R. Patil, (2014) Review on Steel Plate
Shear Wall for Tall Buildings, 3 973–978.
[15] S. Sabouri-ghomi, S. Mamazizi, (2018) Experimental
investigation on stiffened steel plate shear walls with
two rectangular openings Thin-Walled Structures
Experimental investigation on stiffened steel plate
shear walls with two rectangular openings, Thin
Walled Struct. 86 56–66.
doi:10.1016/j.tws.2014.10.005.
[16] P. Distributed, (2001)Seismic Behavior and Design of
Steel Shear Walls, 1–18.
[17] H. Gao, (2007) Experimental and theoretical studies on
composite steel plate shear walls [Dissertation of
Ph.d.]. Shanghai: Department of Civil Engineering,
Tongji University.
[18] G. Yanlin, D. Quanli, Z. Ming. (2009) Tests and
analysis on hysteretic behavior of bucklingrestrained
steel plate shear wall, J. Build Struct; 30(1) 31-47.
[19] AISC. (2010) Seismic provisions for structural steel
buildings. ANSI/AISC 341–10. Chicago, IL:
American Institute of Steel Construction.
[20] M. Bruneau, C. Uang, R. Sabelli. (2008) Ductile
Design of Steel Structures. 2nd Edition Mc Grow Hill
Education.
[21] E. Grande, A. Rasulo, (2013)Seismic assessment of
concentric X-braced steel frames, Eng. Struct. 49
983–995. doi:10.1016/j.engstruct.2013.01.002.
[23] K.K. Wijesundara, P. Rajeev, (2016) Direct
Displacement-Based Seismic Design of Steel
Concentric Braced Frame Structures Direct
displacement-based seismic design of steel concentric
braced frame structures *, 7982.
[24] J.G. Sizemore, D. Ph, A.M. Asce, L.A. Fahnestock,
D. Ph, M. Asce, (2019) SeismicPerformance
Assessment of Low-Ductility Concentrically Braced
Seismic Performance Assessment of Low-Ductility
Concentrically Braced Frames,.
doi:10.1061/(ASCE)ST.1943-541X.0002276.
[25] AISC. (2005) Seismic Provisions for Structural Steel
Building, American Institude of Steel Construction,
INC, Chicago.
[26] J.W. Berman, M. Bruneau, (2007) Experimental and
analytical investigation of tubular links for
eccentrically braced frames, 29 1929–1938.
doi:10.1016/j.engstruct.2006.10.012.
[27] R.G. Driver, G. Kulak,A. E. Elwi, D. J. L. Kennedy
(1998) FE and simplified models of steel plate shear
wall, Journal of Structural Engrg., ASCE, Vol. 124,
No. 2, PP.121-130.