[1] Keshtegar, B. and Etedali, S., 2016: Novel mathematical models based on regression analysis scheme for optimum tuning of TMD parameters. Journal of solid fluid mechanics, 6(4), 59-75. (In Persian).
[2] Mohebbi, M., Shakeri, K. & Majzoub, H., 2012: Genetic Algorithm Based Approach for Optimal Design of Multiple Tuned Mass Dampers (MTMDs) under Earthquake Excitation. Modares Civil Engineering journal, 12(1) (In Persian).
[3] Pourzeynali, S., Fallah, N., & Akbari, A. M., 2014: Experimental Analysis of the TMD Control of Building Vibrations against Earthquake Excitations. Journal of civil engineering, 25(2), 147-158. (In Persian).
[4] Katebi, J. & Shoaei-parchin, M., 2017: Design of optimal controller for structures using differential evolution algorithm. Modares Civil Engineering journal, 17(1), 179-191. (In Persian).
[5] Zhou, K. and Doyle, J.C., 1998: Essentials of robust control (Vol. 104). Upper Saddle River, NJ: Prentice hall.
[6] Zhang, H., Shi, Y. & Mehr, A.S., 2011: Robust static output feedback control and remote PID design for networked motor systems. IEEE Transactions on Industrial Electronics, 58(12), 5396-5405.
[7] Guclu, R., 2006: Sliding mode and PID control of a structural system against earthquake. Mathematical and Computer Modelling, 44(1-2), 210-217.
[8] Aguirre, N., Ikhouane, F. and Rodellar, J., 2011: Proportional-plus-integral semiactive control using magnetorheological dampers. Journal of Sound and Vibration, 330(10), 2185-2200.
[9] Etedali, S., Sohrabi, M.R. & Tavakoli, S., 2013: Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers. Earthquake Engineering and Engineering Vibration, 12(1), 39-54.
[10] Zamani, A.A., Tavakoli, S. & Etedali, S., 2017: Fractional order PID control design for semi-active control of smart base-isolated structures: a multi-objective cuckoo search approach. ISA transactions, 67, 222-232.
[11] Heidari, A.H., Etedali, S. & Javaheri-Tafti, M.R., 2018: A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD. Frontiers of Structural and Civil Engineering, 12(1), 44-57.
[12] Mahmoodabadi, M.J. & Nejadkourki, N., 2020: Optimal fuzzy adaptive robust PID control for an active suspension system. Australian Journal of Mechanical Engineering, 1-11.
[13] Campo, P.J. & Morari, M., 1990: Robust control of processes subject to saturation nonlinearities. Computers & Chemical Engineering, 14(4-5), 343-358.
[14] Meisami-Azad, M., Grigoriadis, K.M. & Song, G., 2013: Anti-windup linear parameter varying control of structural systems with magneto-rheological dampers. Journal of Vibration and Control, 19(12), 1779-1794.
[15] Bui, H.L., Nguyen, C.H., Bui, V.B., Le, K.N. & Tran, H.Q., 2017: Vibration control of uncertain structures with actuator saturation using hedge-algebras-based fuzzy controller. Journal of Vibration and Control, 23(12), 1984-2002.
[16] Salloum, R., Moaveni, B. & Arvan, M.R., 2015: Identification and robust controller design for an electromechanical actuator with time delay. Transactions of the Institute of Measurement and Control, 37(9), 1109-1117.
[17] Zhou, K., Doyle, J. C. & Glover, K. 1996: Robust and optimal control. New Jersey: Prentice hall, 146.
[18] Huo, L., Song, G., Li, H., Grigoriadis, K. 2007: H_∞ Robust control design of active structural vibration suppression using an active mass damper. Smart materials and structures, 17(1), 015021.
[19] Åström, K. & Hägglund, T. 2005: Advanced PID Control. ISA, Research Triangle Park, NC, 76-80.
[20] Arfiadi, Y., & Hadi, M. N. S. 2001: Optimal direct (static) output feedback controller using real coded genetic algorithms. Computers & Structures, 79(17), 1625-1634.
[21] Ogata, K. 2002: Modern control engineering. 5th Edition, Pearson, Upper Saddle River, 583-585.