[1] Hen-Cheng, Dan., Lin-Hua, He. and Xu, B. (2016). “Experimental Investigation on Skid Resistance of Asphalt Pavement under Various Slippery Conditions”, Int. J. Pavement Eng. doi: http://dx.doi.org/10.1080/10298436.2015.1095901
[2] Zhang, H. (2012). “Study on Grades of Freeway Meteorological Disasters by Risk Matrix”, Appl. Mech. Mater., Vol. 178, pp. 2788–2792.
[3] Shao, L., Park, S. W. and Kim, Y. R. (1997). “Simplified Procedure for Prediction of Asphalt Pavement Subsurface Temperatures Based on Heat Transfer Theories”, Transportation Research Record, Vol. 1568, pp. 114–123. doi: https://doi.org/10.3141/1568-14
[4] Kim, Y. R, and Lee, Y. C. (1995). “Interrelationships Among Stiffnesses of Asphalt-Aggregate Mixtures”, Journal of the Association of Asphalt Paving Technologists, Vol. 64, pp. 575–609.
[5] Park, H. M., Kim, Y. R. and Park, S. (2002). “Temperature Correction of Multiload-Level Falling-Weight Deflectometer Deflections”, Transportation Research Record, Vol. 1806, pp. 3–8. doi: https://doi.org/10.3141/1806-01
[6] Petersen, C. and Mahura, A. (2012). “Influence of the Pavement Type on the Road Surface Temperature”, Danish Meteorological Institute, Copenhagen, Denmark.
[7] Irwin, R. S. and Boston, I. (2005). “Rigid and Flexible Pavement Design”, Transportation Research Record, Journal of the Transportation Research Board, No. 1919, Washington, D.C., USA.
[8] Arifuzzaman, M. (2017). “Advanced ANN Prediction of Moisture Damage in CNT Modified Asphalt Binder”, Soft Computing in Civil Engineering, Vol. 1, No. 1, pp. 1-11. doi: https://doi.org/10.22115/scce.2017.46317
[9] Naderpour, H., Nagai, K., Fakharian, P. and Haji, M. (2019). “Innovative Models for Prediction of Compressive Strength of FRP-Confined Circular Reinforced Concrete Columns Using Soft Computing Methods”, Composite Structures, Vol. 215, pp. 69-84. doi: https://doi.org/10.1016/j.compstruct.2019.02.048
[10] Solatifar, N. and Lavasani, S. M. (2020). “Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data”, Journal of Rehabilitation in Civil Engineering, Vol. 8, No. 1, pp. 121-132. doi: https://dx.doi.org/10.22075/jrce.2019.17120.1328
[11] Karlaftis, M. G. and Vlahogianni, E. I. (2011). “Statistical Methods Versus Neural Networks in Transportation Research: Differences, Similarities and Some Insights”, Transportation Research Part C, Vol. 19, No. 3, pp. 387-399
[12] Golshani, N., Shabanpour, R., Mohammadifard, S., Derriblr, S. and Mohammadian, A. (2017). “Comparison of Artificial Neural Networks and Statistical Copula-Based Joint Models”, Transportation Research Board, No. 17, 96th Annual Meeting, Washington, D.C., USA.
[13] Xu, B., Han-Cheng, Dan. and Li, L. (2017). “Temperature Prediction Model of Asphalt Pavement in Cold Regions Based on an Improved BP Neural Network”, Applied Thermal Engineering, Vol. 120, pp. 568-580. doi: https://dx.doi.org/10.1016/j.applthermaleng.2017.04.0
[14] Matic, B., Matic, D., Sremac, S., Radovic, N. and Vidikant, P. (2014). “A Model for the Pavement Temperature Prediction at Specified Depth Using Neural Networks”, Metalurgija, Vol. 53, No. 4.
[15] Godoy, J., Haber, R., Muñoz, J. J., Matía, F. and García, Á. (2018). “Smart Sensing of Pavement Temperature Based on Low-Cost Sensors and V2I Communications”, Sensors (Basel), Vol. 18, No. 7. doi: https://doi.org/10.3390/s18072092.
[16] Stubstad, R. N., Baltzer, S., Lukanen, E. O. and Ertman-Larsen, H. J. (1994). “Prediction of AC Mat Temperatures for Routine Load-Deflection Measurements, in 4th International Conference on the ‘Bearing Capacity of Roads and Airfields’, Minneapolis, Minnesota, USA.
[17] Lukanen, E. O., Chunhua, H. and Skok, E. L. (1998). “Probabilistic Method of Asphalt Binder Selection Based on Pavement Temperature”, Transportation Research Record, Transportation Research Board, Vol. 1609, Issue. 1, pp. 12-20. doi: https://doi.org/10.3141/1609-02
[18] Tabatabaie, S. A., Ziari, H. and Khalili, M. (2008). “Modeling Temperature and Resilient Modulus of Asphalt Pavements for Tropic Zones of Iran”, Asian Journal of Scientific Research, Vol. 1, pp. 579-588. doi: 10.3923/ajsr.2008.579.588
[19] Hassan, H. F., Al-Nuaimi, A. S., Taha, R. and Jafar, T. M. A. (2005). “Development of Asphalt Pavement Temperature Models for Oman”, Journal of Engineering Research, Vol. 2, No. 1. pp. 32-42.
[20] Diefenderfer, B. K., Al-Qadi, I. L. and Diefenderfer, S. D. (2006). “Model to Predict Pavement Temperature Profile: Development and Validation”, Journal of Transportation Engineering, Vol. 132 Issue. 2. doi: https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(162)
[21] Solatifar, N., Abbasghorbani, M., Kavussi, A. and Sivilevičius, H. (2018). “Prediction of Depth Temperature of Asphalt Layers in Hot Climate Areas”, Journal of Civil Engineering and Management, Vol. 24, No. 7, pp. 516-525. doi: https://doi.org/10.3846/jcem.2018.6162
[22] Sedighian-Fard, M. and Solatifar, N. (2020). “Analysis of Regression-Based Models for Prediction of Depth Temperature of Asphalt Layers – A Review”, Amirkabir Journal of Civil Engineering, doi: 10.22060/CEEJ.2020.18131.6793
[23] Gedafa, D. S., Hossain, M. and Romanoschi, S. A. (2014). “Perpetual Pavement Temperature Prediction Model”, Journal of Road Materials and Pavement Design, Vol. 15, No. 1, pp. 55–65, doi: http://dx.doi.org/10.1080/14680629.2013.852610
[24] Li. Y., Liu, L. and Sun, L. (2018). “Temperature Predictions for Asphalt Pavement with Thick Asphalt Layer”, Construction and Building Materials, Vol. 160, pp. 802-809. doi: https://doi.org/10.1016/j.conbuildmat.2017.12.145
[25] Asefzadeh, A., Hashemian, L. and Bayat, A. (2017). “Development of Statistical Temperature Prediction Models for a Test Road in Edmonton, Alberta, Canada”, International Journal of Pavement Research and Technology, Vol. 10, Issue. 5, pp. 369-382. doi: https://doi.org/10.1016/j.ijprt.2017.05.004
[26] Rafiq, M. Y., Bugmann, G. and Easterbrook, D. J. (2001). Neural Network Design for Engineering Applications”, Computers & Structures, Vol. 79, No. 17, pp. 1541-1552.
[27] Zhang, G., Patuwo, B. E. and Hu, M. Y. (1998). “Forecasting with Artificial Neural Networks: The State of the Art”, International Journal of Forecasting, Vol. 14, No. 1, pp. 35-62.
[28] Alharbi, F. (2018). “Predicting Pavement Performance Utilizing Artificial Neural Network (ANN) Models”, Ph.D. Thesis, Iowa State University, USA.
[29] Solatifar, N. and Abbasghorbani, M. (2019). “Calibration of Regression Models Based on Viscoelastic Principles for Prediction of Dynamic Modulus of In-Service Asphalt Layers”, Journal of Transportation Engineering, In press.