بررسی عددی تأثیر خوردگی آرماتورهای عرضی بر کاهش مقاومت فشاری المان های بتن مسلح

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه زنجان
2 دانشگاه علم و صنعت ایران
3 تهران دانشگاه آزاد اسلامی واحد شرق
چکیده
با افزایش عمر سازه ­ها خوردگی آرماتور در اعضای بتن مسلح بعنوان یک مشکل مهم در محیط­ های مستعد خوردگی درآمده است. از طرفی خوردگی آرماتورهای عرضی باتوجه به پوشش بتنی و قطر کمتر، زودتر از آرماتورهای طولی شروع می­شود. این امر باعث کاهش محصورشدگی و در نتیجه کاهش ظرفیت تغییرشکل و شکل­پذیری سازه می­شود. بنابراین، ارزیابی سازه­های بتن مسلح خورده­شده موجود به موضوع تحقیقاتی مورد علاقه بسیاری از محققان در زمینه مطالعات سازه تبدیل شده است. در این مقاله به بررسی کاهش مقاومت المانهای بتن مسلح با آرماتور عرضی خورده شده پرداخته شده است. در ابتدا مدل عددی نمونه­ ها با استفاده از نرم­ افزار اجزای محدود ساختهشده و با نتایج آزمایشکاهی صحت سنجی می­شود. در مرحله بعد مدل­های بیشتری با در نظر گرفتن اثر پارامتر مقاومت مشخصه بتن ساخته شده و مقاومت فشاری کاهش یافته بتن محصور شده ارزیابی شده است. نتایج حاکی از آن است که در اثر خوردگی آرماتورهای دورپیچ، مقاومت محصورشدگی ناشی از آنها کاهش می­یابد ولی این کاهش در درجات خوردگی بالاتر کمتر می­باشد. همچنین در اثر خوردگی آرماتورهای عرضی از نوع خاموت، مقاومت محصورشدگی ناشی از آنها کاهش می­یابد ولی این کاهش بسته به فاصله خاموت­ها و درجه خوردگی متفاوت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

A Numerical Investigation into the Effect of Transverse Reinforcement Corrosion on Compressive Strength Reduction of Reinforcement Concrete Elements

نویسندگان English

Ali Goharrokhi 1
jamal ahmadi 1
Mohsenali Shayanfar 2
Kiarash Nasserasadi 1
mohamad ghanoonibagha 3
1 University of Zanjan
2 Iran University of Science & Technology
3 East Tehran Branch, Islamic Azad
چکیده English

As service years increase, the corrosion of steel rebar stands out as a major problem for existing reinforced concrete (RC) structures in corrosion-inducing environment. The mechanism of steel corrosion in concrete is an electro chemical process, which is often accelerated by the ingress of aggressive chemicals, for example chloride ion. The accumulation of corrosion products on steel rebar is able to generate circular stress which could result in cover cracking. Corrosion of steel rebar will degrade the physical appearance and reduce its original cross section. Corrosion often appears to be non-uniform and localized. Corrosion damaged RC elements displayed smaller yield strength, ductility, energy dissipation capacity, etc. Corrosion level of stirrup tends to be higher than longitudinal rebar due to smaller diameter and less cover protection. Stirrup corrosion decreased confinement behaviour on concrete, thus exacerbating the degeneration of the deformation capacity and the ductility of the RC structures. The corrosion of reinforcement steel bars (rebar) is a natural electrochemical reaction RC structures have to face with. It is exacerbated by exposure to corrosion-inducing environment factors, including de-icing salt, marine salty water, carbon dioxide, sulfur dioxide, etc. The chloride from salt (NaCl) could make hazardously chemical attack on steel bar by acting as an efficient catalyst in the corrosion process. The corrosion of steel bar in the existing reinforced concrete structure has raised great concern over its safety and seismic performance among practising engineers, researchers and residents, etc., because steel bar is the most essential element in RC. Corrosion reduces the effective cross-section area of longitudinal and transverse rebars.

Due to a small concrete cover of transverse rebars compared with longitudinal rebars, the corrosion of them becomes earlier and more severe, leading to cracks in concrete, a decrease of confinement, an intensification of reduction in deformation capacity and ductility of reinforced concrete structures. For this purpose, an experimental investigation is carried out on reinforced concrete specimens include spiral and stirrup and the variables include the corrosion percentage, rebar diameter, transverse rebar pitch, and confined core diameter. Results demonstrate that the high degree corrosion has a fewer significant effect on the reduction in confinement strength, and smaller-sized transverse reinforcements are less sensitive to corrosion.

کلیدواژه‌ها English

Chloride Attack
Spiral
Stirrup
Compressive Capacity
Confined Concrete Strength
[1] M. Ghanooni-Bagha, M.A. Shayanfar, A.A. Shirzadi-Javid, H. Ziaadiny., (2016), “Corrosion-induced reduction in compressive strength of self-compacting concretes containing mineral admixtures”, Construction and Building Materials, 113, 221–228.
[2] Li, C. Q. and S. T. Yang, Prediction of concrete crack width under combined reinforcement corrosion and applied load. Journal of Engineering Mechanics, 137(11), pp. 722-731, 2011.
[3] Ma, Y., Che, Y. & Gong, J., Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading. Construction and Building Materials, 29, pp. 548-556, 2012.
[4] Wang, X. H. & Liang, F. Y., Performance of RC columns with partial length corrosion. Nuclear Engineering and Design, 238(12), pp. 3194-3202, 2008.
[5] M. Berra, A. Castellani, D. Coronelli, S. Zanni, G. Zhang, Steel–concrete bond deterioration due to corrosion: finite-element analysis for different confinement levels, Magazine of Concrete Research, 55(3) (2003) 237-247.
[6] Lundgren, K., Bond between ribbed bars and concrete. Part 1: Modified model, Magazine of Concrete Research, (2005).
[7] I. Saether, B. Sand, FEM simulations of reinforced concrete beams attacked by corrosion, 2012.
[8] Shayanfar, M.A., Ghanooni-Bagha, M. Study of the corrosion effects of reinforcement in loading of reinforced concrete columns of bridges with limited non-linear element method. Sharif Journal Civil Engineering (2012). (in persian)
[9] Shayanfar, M.A., Savoj, H.A., Ghanooni-Bagha, M., Kahrom, A. The effects of corrosion on seismic performance of reinforced concrete moment frames. Journal of Structural and Construction Engineering (2018). (in persian)
[10] Abaqus Analysis Users Manual. 2016. Dassault Systemes Simulia Corp. Providence, RI.
[11] EN 1992-1-1. 2004. Design of concrete structures – Part 1-1: General rules and rules for buildings, 225 pp.
[12] Ou, Y. C., Fan, H. D. & Nguyen, N. D., Long‐term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack. Earthquake Engineering & Structural Dynamics, 42(14), pp. 2113-2127, 2013.
[13] Lee, H. S., Noguchi, T. & Tomosawa, F., Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion. Cement and Concrete research, 32(8), pp. 1313-1318, 2002.
[14] Zhang G, Li B. The corrosion of stirrups and its effect on the seismic fragility of a corroded reinforced concrete (RC) column. Risk Anal 2014;47:331–42.
[15] Goharrokhi, A., Ahmadi, J., Shayanfar, M.A. et al. Effect of transverse reinforcement corrosion on compressive strength reduction of stirrup-confined concrete: an experimental study. Sādhanā 45, 49 (2020).
[16] Ahmadi, J., Shayanfar, M.A., Ghanooni-Bagha, M. et al. An Experimental Investigation into the Effect of Transverse Reinforcement Corrosion on Compressive Strength Reduction in Spirally Confined Concrete. Iran J Sci Technol Trans Civ Eng (2020).
[17] S.P. Tastani, S.J. Pantazopoulou, D. Zdoumba, V. Plakantaras, E. Akritidis, Limitations of FRP jacketing in confining old-type reinforced concrete members in axial compression, J. Compos. Constr. 10 (1) (2006) 13–25.
[18] Tastani, S., and Pantazopoulou, S. _2004_. “Experimental evaluation of FRP jackets in upgrading RC corroded columns with substandard detailing.” Eng. Struct., 26_6_, 817–829.
[19] Huang L, Xun X, Yan L, Zhu D. Compressive behavior of concrete confined with GFRP tubes and steel spirals. Polymers 2015;7(5): 851-875.