ارزیابی و پیش بینی ضرایب رفتار قاب های بتنی در معرض زلزله های حاوی توالی لرزه اصلی و پس لرزه های بحرانی با استفاده از شبکه های عصبی مصنوعی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده مهندسی عمران، دانشگاه تفرش
چکیده
در حالت کلی لحاظ نمودن پدیده توالی لرزه­ ای در زلزله­ های تشکیل­دهنده یک سناریوی لرزه­ای، منجر به تغییرات چشمگیری در پاسخ و عملکرد سیستم­های سازه­ای می­گردد. با این حال در اغلب موارد، این پدیده در روند تحلیل و طراحی نادیده گرفته می­شود. افزایش پارامترهایی از قبیل جابجایی غیرالاستیک و نیاز شکل­پذیری سازه به واسطه در نظر گرفتن لرزه­های متوالی، افت نسبتاً شدیدی نسبت به حالت منفرد در ظرفیت سازه ایجاد نموده و منجر به وقوع خرابی­های وسیعی در سیستم می­گردد. از این­رو عدم لحاظ نمودن زمین­لرزه­های متوالی می­تواند به تخمین غیرمحافظه­کارانه تقاضای لرزه­ای و همچنین ریسک لرزه­ای بینجامد و روند برنامه­ریزی­ها و بالتبع مدیریت بحران را در زمینه نجات و اسکان انسان­ها مختل ­نماید. طراحی مناسب و صحیح ساختمان­ها، یکی از راهکارهای لحاظ نمودن اثرات پدیده توالی لرزه­ای و اجتناب از موارد فوق است. در این راستا تعیین ضرایب رفتار مناسب می­تواند رهیافتی جهت دسترسی به این مهم باشد. چرا که سازه طراحی شده بر مبنای سناریوی لرزه­ای توصیه شده در آیین­نامه­ها بعنوان زلزله طرح منفرد خیلی سریع­تر از آنچه در دستورالعمل­ها پیش­بینی شده است، خسارت جدی دیده و گاهاً در بسیاری موارد تخریب می­شود. در این مقاله با استفاده از نتایج حاصل از تحلیل دینامیکی فزاینده قاب­های خمشی 5، 7 و 12 طبقه - با تعداد طبقات متعارف در شهر تهران براساس طرح تفصیلی جدید و طراحی شده براساس استاندارد 2800 ایران، ویرایش چهارم- تحت زمین­لرزه­های متوالی ثبت شده بحرانی در نرم­افزار Opensees ضرایب رفتار قاب­های خمشی بتن­آرمه محاسبه است. در ادامه با طراحی و آموزش شبکه­های عصبی مصنوعی ایده­آل براساس مشخصات قاب­های بتنی و زلزله­های مورد استفاده، ضرایب رفتار پیش­بینی شده است. نتایج حاکی از کاهش حدود 20 درصدی ضرایب رفتار به واسطه لحاظ نمودن لرزه­های متوالی و قابلیت مناسب شبکه­ها در تخمین نتایج است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation and Prediction of Response Modification Factor for RC Moment Frames under Critical Consecutive Earthquakes using Artificial Neural Network

نویسندگان English

Elham Rajabi
Vahid Abdollahi
Assistant Professor, Department of Civil Engineering, Tafresh University, 39518-79611 Tafresh, Iran
چکیده English

A large main shock may consist of numerous aftershocks with a short period. The aftershocks induced by a large main shock can cause the collapse of a structure that has been already damaged by the preceding main shock. These aftershocks are important factors in structural damages. Furthermore, despite what is often assumed in seismic design codes, earthquakes do not usually occur as a single event, but as a series of strong aftershocks and even fore shocks. In other word, structures that are located in seismically active regions often may be subjected to successive earthquakes which occurred with significant PGA in a short time after each other. For this reason, this paper investigates the effect and potential of consecutive earthquakes on the response and behavior of reinforced concrete structures. For this purpose, the response modification factor (R factor) which is one of the significant parameters in the structural design of buildings and decreases the lateral forces induced by earthquakes, is calculated and estimated for reinforced concrete moment frames under critical single and successive earthquakes. Thus, three reinforced concrete moment frames with 5, 7, and 12 stories are designed according to Iranian seismic codes (standard No. 2800) and modeled in Opensees software. After the design of the samples, critical seismic scenarios with/without successive shocks are selected from “PEER” center. Consecutive earthquakes not only occurred in the similar directions and same stations, but also their real time gaps between successive shocks are less than 10 days. In the following, R factors of RC moment frames are calculated from the results of incremental dynamic analysis (IDA(, time history and nonlinear static analysis (pushover). The results show about 20% reduction in the R factor and, also increment of damages under successive earthquakes comparing to the individual one. Finally, the idealized multilayer artificial neural networks, with the least value of Mean Square Error (MSE) and maximum value of regression (R) between outputs and targets were then employed to estimate the R factors. Theses artificial neural networks are designed based on the features of frame properties, successive earthquakes. Comparison of predicted R factors with real values indicates the adequate ability of networks in estimation of the results. So that, the average error for the artificial neural network model for predicting the calculated results from IDA, Pushover and Linear Analysis is less than 4%. To be more specific, more than 73% and 93% of the simulated R factors are within ±5% and ±10% of the real values for artificial neural network model. This is an indication that the networks have learned to generalize the unseen information well and reflects good precision in simulating. Moreover, it can be seen that the values simulated by the artificial neural network model spread around the 45 degree line which implies neither over-estimation nor under-estimation.

کلیدواژه‌ها English

Critical Seccessive Earthquakes
Reinforced Concrete Moment Frame
Incremental dynamic analysis
artificial neural networks
Response Modification Factor
[1] Pan H., and Kusunoki K. 2020 Aftershock damage prediction of reinforced-concrete buildings using capacity spectrum assessments. Soil Dynamics and Earthquake Engineering. 129, 105952.
[2] Massumi A., Sadeghi K., and Ghaedi H. 2020 The effects of mainshock-aftershock in successive earthquakes on the response of RC moment-resisting frames considering the influence of the vertical seismic component. Ain Shams Engineering Journal. I Press.
[3] Jamani H., Amirm J., and Rajabnejad H. 2018 Energy distribution in RC shear wall-frame structures subject to repeated earthquakes. Soil Dynamics and Earthquake Engineering. 107, 116-128.
[4] Faisal A., Majid T., and Hatzigeorgiou G. 2013 Investigation of story ductility demands of inelastic concrete frames subjected to repeated earthquakes. Soil Dynamics and Earthquake Engineering, 44, 42-53.
[5] Vadeo S., and Waghmare M. 2019 Nonlinear Analysis of RC Structure under Multiple Earthquakes. Journal for Modern Trends in Science and Technology. 5(09), 60-65.
[6] Vona M., and Mastroberti M. Estimation of the behavior factor of existing RC-MRF buildings. EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION. 17(1), 191-204.
[7] Amadio C., Fragiacomo M., and Rajgelj S. 2003 The effects of repeated earthquake ground motions on the non‐linear response of SDOF systems. Earthquake Engineering & Etructural Dynamics. 32(2), 291-308.
[8] Hatzigeorgiou G. 2010 Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes. Computers & structures. 88(5-6, 309-321.
[9] Zhai CH., Wen WP., Li S., and Xie LL. 2015 The ductility-based strength reduction factor for the mainshock–aftershock sequence-type ground motions. Bulletin of Earthquake Engineering. 13(10), 2893-914.
[10] Iranian Code of Practice for seismic Resistant Design of Buildings. 2015. (Standard No. 2800), 4rd Edition.
[11] Ghodrati Amiri G., and Rajabi E. 2017 Damage Evaluation of Reinforced Concrete and Steel Frames under Critical Successive Scenarios. International Journal of Steel Structures. 17(4): 1495-1514.
[12] Amiri G., and Dana F. 2005 Introduction of the most suitable parameter for selection of critical earthquake. Computers & Structures. 83(8-9, 613-626.
[13] Nagae T., Ghannoum W., Kwon J., Tahara K., Fukuyama K., Matsumori T., Shiohara H., Kabeyasawa T., Kono S., Nishiyama M., Sause R., Wallace J., and Moehle J. P.2015 Design Implications of Large-Scale Shake-Table Test on Four-Story Reinforced Concrete Building. ACI STRUCTURAL JOURNAL, TECHNICAL PAPER. ACI Structural Journal. 112: 1-6.
[14] Haselton C., Taylor Lange A., Liel B., and Deierlein GG. 2007 Beam-Column Element Model Calibrated for Predicting Flexural Response Leading to Global Collapse of RC Frame Buildings. Report No. PEER Report 2007/03. Berkeley Pacific Earthquake Engineering Research Center College of Engineering, University of California.
[15] Uang C. 1991 Establishing R (or R w) and C d factors for building seismic provisions. Journal of structural Engineering. 117(1), 19-28.
[16] Leung CK., Ng MY., and Luk HC. 2006 Empirical approach for determining ultimate FRP strain in FRP strengthened concrete beams. JOURNAL OF COMPOSITES FOR CONSTRUCTION. 10(2), 125-138.