ارزیابی خواص مکانیکی بتن خود ترمیم شونده حاوی میکروارگانیسم

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه مهندسی عمران، مجتمع آموزش عالی بم ، بم ، ایران
2 گروه مهندسی عمران، موسسه آموزش عالی بعثت کرمان
چکیده
چکیده

بتن خود ترمیم نوعی بتن است که در صورت بروز ترک در آن، بدون نیاز به عامل بیرونی باعث ترمیم خودکار ترک‌ها می‌شود. بتن حاوی میکروارگانیسم، دارای خاصیت خودترمیمی است. عامل خود ترمیمی شامل یک غلظت مشخص از باکتری به همراه یک ماده مغذی در بتن می‌باشد که در صورت رسیدن آب و شرایط محیطی به بتن، باعث تولید کلسیم کربنات می‌شود. اما اینکه باکتری در خواص مکانیکی بتن چه تأثیری می‌گذارد موضوع بسیار مهمی در استفاده از این نوع بتن می‌باشد که در این تحقیق مورد بررسی قرارگرفته است. در این مقاله، چهار دسته بتن مختلف ساخته‌شده است. بتن حاوی میکروارگانیسم در دو غلظت مختلف باکتری باسیلوس پاستوری و ماده مغذی کلسیم لاکتات ساخته و با بتن حاوی میکرو سیلیس، بتن حاوی لاتکس و بتن کنترل مقایسه شده است. در هر چهار دسته از طرح مخلوط مشابه با نسبت آب به سیمان ۴۸ /۰ و حاوی میکرو سیلیس، پلیمر لاتکس و کلسیم لاکتات که در درصدهای مختلف جایگزین سیمان شده‌اند، استفاده‌ شده است. نمونه‌ها در سنین ۷ و ۲۸ روزه از عمل‌آوری تحت آزمایش‌های مقاومت فشاری، خمشی و کششی قرارگرفته و نتایج آن‌ها با یکدیگر مقایسه شده‌اند. نتایج نشان می دهد که بهترین عملکرد در میان نمونه ها، مربوط به بتن حاوی میکرو سیلیس می باشد و عامل خود ترمیمی (باکتری و ماده مغزی) موجب افزایش مقاومت فشاری و کاهش مقاومت‌های کششی و خمشی نسبت به نمونه کنترل شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Mechanical Properties Evaluation of Self-Healing Concrete Containing Microorganisms

نویسندگان English

Hamzeh Dehghani 1
Reza Hamzeh 2
1 Department of Civil Engineering, Higher education complex of Bam, Bam, Iran
2 Departement of Civil Engineering, Besat Higher Education Institute of Kerman
چکیده English

Abstract:

Concrete is the most widely made construction material in the structural engineering world. Advantages such as high compressive strength, availability of raw materials, and low preparation cost make concrete one of the most important used construction materials. Under harsh environmental conditions, aggressive agents such as sulfates and chlorides penetrate the concrete through these cracks to damage the concrete. While concrete cracks are not only expensive to repair, they are often hard to detect as well. It is now identified that the strength of concrete alone is not sufficient, the degree of harshness of the environmental condition to which concrete is exposed over its entire life is very important. Self-healing concrete is a type of concrete that has the ability to repair itself without the need for an external agent during cracking. Concrete containing microorganisms has self-healing properties. The self-healing agent contains a specific concentration of bacteria with a nutrient in the concrete that produces calcium carbonate while the water and environmental conditions are suitable for the concrete. In this research, four different specimens of concrete have been made. Concrete containing microorganisms is made in two different concentrations of bacterium bacillus pasteurization (107,109 cells/ml) and calcium lactate nutrients and is compared with concrete containing silica fume, concrete containing latex and control concrete. In all four specimens, the same mix design was used with a water/cement ratio of 0.48 and containing silica fume, latex polymer, and calcium lactate, which replaced cement in different percentages. Specimens were subjected to compressive, flexural, and tensile strength tests at 7 and 28 days of operation, and the results were compared. The results showed that the best performance among all specimens for concrete containing silica fume and self-repair agent (bacteria and brain material) increased compressive strength and reduced tensile and flexural strengths compared to the controlled specimens. The use of a self-healing agent in concrete increases the compressive strength of concrete, but this increase is not as great as the increase in silica fume. Bacteria with a higher concentration have a negative effect on the compressive strength of concrete so that more use of bacteria in concrete increases the compressive strength to such an extent that it even reduces the compressive strength compared to the concrete strength of the control specimens. The self-healing agent reduces the flexural and tensile strength of concrete, as opposed to silica fume but they are better than latex and produce better results.

کلیدواژه‌ها English

Self-healing concrete
Bacteria
Pasteurii bacillus
Latex
Silica Fume
Mechanical properties
[1] Parastegari N. & Mostofinejad D. 2019 Influence of bacteria on performance of air entrained concrete. Amirkabir Journal of Civil Engineering, 50(6), 1103-1112.
[2] Chahal N., Siddique R. & Rajor A. 2012 Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Construction and Building Materials, 37(1), 645-651.
[3] Wang J., Van Tittelboom K., De Belie N. & Verstraete W. 2012 Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 26(1), 532-540.
[4] Sidiq A., Gravina R & Giustozzi F. 2019 Is concrete healing really efficient? A review. Construction and Building Materials, 250, 257-273.
[5] Ramakrishnan V., Bang S.S. & Deo K.S. 1988 A novel technique for repairing cracks in high performance concrete using bacteria. International Conference on High Performance High Strength Concrete, Perth, Australia
[6] Ramachandran S.K., Ramakrishnan V. & Bang S.S. 2001 Remediation of concrete using micro organisms. ACI Materials Journal, 98(1), 3-9.
[7] Bang S.S., Galinat J.K. & Ramakrishnan V. 2001 Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Tech, 28, 404-409.
[8] Ghosh P., Mandal S., Chattopadhyay B.D. & Pal S. 2005 Use of microorganisms to improve the strength of cement mortar. Cement Concrete Res, 35, 1980-1983.
[9] De Muynck W., Debrouwer D., De Belie N. & Verstraete W. 2008 Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concrete Res. 38, 1005-1014.
[10] Jonkers H.M., Thijssen A., Muyzer G., Copuroglu O. & Schlangen, E. 2010 Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230-235.
[11] Van Tittelboom K., De Belie N., De Muynck W. & Verstraete W. 2010 Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40(1), 157-166.
[12] Nosouhian F., Mostofinejad, D. & Hasheminejad, H. 2015 Concrete Durability Improvement in a Sulfate Environment Using Bacteria. Journal of Materials in Civil Engineering, ASCE, 28(1), 1-12.
[13] Bundur Z.B., Amiri A., Erşan Y.Ç., Boon N. & De Belie N. 2017 Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability. Cement and Concrete Research, 98 44-49.
[14] Salmasi F. & Mostofinejad D. 2020 Investigating the effects of bacterial activity on compressive strength and durability of natural lightweight aggregate concrete reinforced with steel fibers. Construction and Building Materials, 251:119032.
[15] ASTM C 150, Standard Specification for Portland
Cement, 2014.
[16] ASTM C 33, Standard specification for concrete
aggregates, 2013.

[17] Jonkers H. M. 2007 Self Healing Concrete: A Biological Approach. Self Healing Materials,195-204.
[18] ASTM C192, Standard Practice for Making and Curing Concrete Specimens in the Laboratory, 2002.
[19] ASTM C1439, Standard Test Methods for Evaluation Latex and Powder Polymer Modifiers for use in Hydraulic Cement Concrete and Mortar, 2019.
[20] ASTM C469, Standard Test Method for Static Modulus of Elasticity and Poisson Ratio of Concrete in Compression, 2014.
[21] Mazloom M, Ramezanianpour AA & Brooks JJ. 2004 Effect of silica fume on mechanical properties of high-strength concrete. Cement & Concrete Composite, 4:347-357.
[22] Sierra-Beltran MG, Jonkers HM & Schlangen E. 2004 Characterization of sustainable bio-based mortar for concrete repair. Construction Building Materials, 67, 344-352.