[1] N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, K. Scheckel, Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?, J. Hazard. Mater. 266 (2014) 141–166. doi:10.1016/j.jhazmat.2013.12.018.
[2] P.W. Abrahams, Soils: Their implications to human health, Sci. Total Environ. 291 (2002) 1–32. doi:10.1016/S0048-9697(01)01102-0.
[3] W. Zhang, C. Liu, L. Wang, T. Zheng, G. Ren, J. Li, J. Ma, G. Zhang, H. Song, Z. Zhang, Z. Li, A novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal: Preparation and performance evaluation, Colloids Surfaces A Physicochem. Eng. Asp. 561 (2019) 364–372. doi:10.1016/j.colsurfa.2018.10.077.
[4] K.R. Henke, Arsenic: Environmental Chemistry, Health Threats and Waste Treatment, 2009. doi:10.1002/9780470741122.
[5] A.O. Fayiga, U.K. Saha, Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils, Geoderma. 284 (2016) 132–143. doi:10.1016/j.geoderma.2016.09.003.
[6] F.I. Khan, T. Husain, R. Hejazi, An overview and analysis of site remediation technologies, J. Environ. Manage. 71 (2004) 95–122. doi:10.1016/j.jenvman.2004.02.003.
[7] A. Thomé, K.R. Reddy, C. Reginatto, I. Cecchin, Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives, Water. Air. Soil Pollut. 226 (2015) 1–20. doi:10.1007/s11270-014-2243-z.
[8] A. Mahar, P. Wang, R. Li, Z. Zhang, Immobilization of Lead and Cadmium in Contaminated Soil Using Amendments: A Review, Pedosphere. 25 (2015) 555–568. doi:10.1016/S1002-0160(15)30036-9.
[9] Modern approaches to remediation of heavy metal polluted soils: A review, Eurasian Soil Sci. 47 (2014) 707–722. doi:10.1134/S1064229314070072.
[10] B. Eyvazi, A. Jamshidi-Zanjani, A. Khodadadi Darban, Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe2O4, J. Hazard. Mater. (2019) 813–819. doi:10.1016/j.jhazmat.2018.11.041.
[11] Q. Hu, Y. Liu, X. Gu, Y. Zhao, Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles, Chemosphere. 181 (2017) 328–336. doi:10.1016/j.chemosphere.2017.04.049.
[12] S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4, Chem. Eng. J. 158 (2010) 599–607. doi:10.1016/j.cej.2010.02.013.
[13] C. Shan, M. Tong, Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide, Water Res. 47 (2013) 3411–3421. doi:10.1016/j.watres.2013.03.035.
[14] S. Martinez–Vargas, A.I. Martínez, E.E. Hernández–Beteta, O.F. Mijangos–Ricardez, V. Vázquez–Hipólito, C. Patiño-Carachure, J. López–Luna, As(III) and As(V) adsorption on manganese ferrite nanoparticles, J. Mol. Struct. 1154 (2018) 524–534. doi:10.1016/j.molstruc.2017.10.076.
[15] E. Naseri, A. Reyhanitabar, S. Oustan, A.A. Heydari, L. Alidokht, Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology, Geoderma. 232–234 (2014) 547–555. doi:10.1016/j.geoderma.2014.06.009.
[16] Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J. Gren, Magnetic properties of Zn-substituted MnFe 2 O 4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia . Evaluation of their toxicity on Endothelial cells, (2010) 5420–5429. doi:10.1021/cm1001708.
[17] A. Mary Jacintha, V. Umapathy, P. Neeraja, S. Rex Jeya Rajkumar, Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities, J. Nanostructure Chem. 7 (2017) 375–387. doi:10.1007/s40097-017-0248-z.
[18] M. Mancuso, A. Pasquo, M.G. Grollino, G. Leter, E. Nardi, C. Cremisini, P. Giardullo, F. Pacchierotti, Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process, (2014) 1919–1929.
[19] A. Pui, D. Gherca, N. Cornei, Synthesis and characterization of MFe2O4 (M = Mg, Mn, Ni) nanoparticles, Mater. Res. Bull. 48 (2013) 1357–1362. doi:10.1016/j.materresbull.2012.11.088.
[20] G. Zhang, J. Qu, H. Liu, R. Liu, R. Wu, Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal, Water Res. 41 (2007) 1921–1928. doi:10.1016/j.watres.2007.02.009.
[21] C.B. Moore, M.L. Pierce, Adsorption of arsenite and arsenate on amorphous iron hydroxide, Water Res. 16 (1982) 1247–1253.
[22] C.M. McCann, C.L. Peacock, K.A. Hudson-Edwards, T. Shrimpton, N.D. Gray, K.L. Johnson, In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil, J. Hazard. Mater. 342 (2018) 724–731. doi:10.1016/j.jhazmat.2017.08.066.
[23] B. An, D. Zhao, Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles, J. Hazard. Mater. 211–212 (2012) 332–341. doi:10.1016/j.jhazmat.2011.10.062.