[1] Brincker, R., Zhang, L. and Andersen, P., 2000, February. Modal identification from ambient responses using frequency domain decomposition. In Proc. of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas.
[2] Brincker, R., Ventura, C. and Andersen, P., 2001, February. Damping estimation by frequency domain decomposition. In Proceedings of the 19th international modal analysis conference (IMAC) (pp. 5-8).
[3] Brincker, R., Zhang, L. and Andersen, P., 2001. Modal identification of output-only systems using frequency domain decomposition. Smart materials and structures, 10(3), p.441.
[4] Karbhari, V.M. and Ansari, F. eds., 2009. Structural health monitoring of civil infrastructure systems. Elsevier Publishing.
[5] Van Overschee, P. and De Moor, B.L., 2012. Subspace identification for linear systems: Theory—Implementation—Applications. Springer Science & Business Media.
[6] Idris, N.S., Koh, H.B. and Kamarudin, A.F., 2015. A Review of Ambient Vibration Technique on Bridges. In Applied Mechanics and Materials (Vol. 773, pp. 1002-1006). Trans Tech Publications Ltd.
[7] Amezquita-Sanchez, J.P. and Adeli, H., 2016. Signal processing techniques for vibration-based health monitoring of smart structures. Archives of Computational Methods in Engineering, 23(1), pp.1-15.
[8] Perez-Ramirez, C.A., Amezquita-Sanchez, J.P., Adeli, H., Valtierra-Rodriguez, M., Romero-Troncoso, R.D.J., Dominguez-Gonzalez, A. and Osornio-Rios, R.A., 2016. Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals. Journal of Vibroengineering, 18(5), pp.3164-3185.
[9] Sirca Jr, G.F. and Adeli, H., 2012. System identification in structural engineering. Scientia Iranica, 19(6), pp.1355-1364.
[10] Wenzel, H., 2009. Ambient vibration monitoring. Encyclopedia of Structural Health Monitoring. John Wiley and Sons Publications.
[11] Newland, D.E., 2012. An introduction to random vibrations, spectral & wavelet analysis. Courier Corporation.
[12] Cole Jr, H.A., 1968, April. On-the-line analysis of random vibrations. In 9th Structural Dynamics and Materials Conference (p. 288).
[13] Cole Jr, H.A., 1971. Failure detection of a space shuttle wing flutter model by random decrement, NASA TMX-62,041.
[14] Cole Jr, H.A., 1973. On-line failure detection and damping measurement of aerospace structures by random decrement signatures, NASA CR-2205.
[15] Ibrahim, S.R., 1977. Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, 14(11), pp.696-700.
[16] Vandiver, J.K., Dunwoody, A.B., Campbell, R.B. and Cook, M.F., 1982. A mathematical basis for the random decrement vibration signature analysis technique, Journal of Mechanical Design, 104(2), pp.307-313.
[17] Brincker, R., Kirkegaard, P.H. and Rytter, A., 1991. Identification of system parameters by the random decrement technique. Instituttet for Bygningsteknik, Aalborg Universities center.
[18] Asmussen, J.C., 1997. Modal analysis based on the random decrement technique: application to civil engineering structures (Doctoral dissertation, Department of Mechanical Engineering, Aalborg University).
[19] Ibrahim, S.R., 2001. Efficient random decrement computation for identification of ambient responses. In Proceedings of SPIE, the International Society for Optical Engineering (Vol. 4359, pp. 1-6). Society of Photo-Optical Instrumentation Engineers.
[20] Rodrigues, J., Brincker, R. and Andersen, P., 2004, January. Improvement of frequency domain output-only modal identification from the application of the random decrement technique. In Proc. 23rd Int. Modal Analysis Conference, Deaborn, MI (pp. 92-100).
[21] Rodrigues, J. and Brincker, R., 2005. Application of the random decrement technique in operational modal analysis. In 1st International Operational Modal Analysis Conference (pp. 191-200). Aalborg University.
[22] Dande, H.A., 2010. Panel Damping Loss Factor Estimation Using the Random Decrement Technique (Doctoral dissertation, University of Kansas).
[23] Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H. and Wu, C.G., 2002. Proper orthogonal decomposition and its applications—Part I: Theory. Journal of Sound and vibration, 252(3), pp.527-544.
[24] Eftekhar Azam, S.E., 2014. Online damage detection in structural systems: Applications of proper orthogonal decomposition, and Kalman and particle filters. Springer Science & Business Media.