[1] Martin-Reina, J., Duarte, J. A., Cerrillos, L., Bautista, J. D., & Moreno, I. (2017). Insecticide reproductive toxicity profile: organophosphate, carbamate and pyrethroids. J Toxins, 4(1), 7.
[2] Sulaiman, N. S., Rovina, K., & Joseph, V. M. (2019). Classification, extraction and current analytical approaches for detection of pesticides in various food products. Journal of Consumer Protection and Food Safety, 1-13.
[3] El-Shafai, N. M., El-Khouly, M. E., El-Kemary, M., Ramadan, M. S., Derbalah, A. S., & Masoud, M. S. (2019). Fabrication and characterization of graphene oxide–titanium dioxide nanocomposite for degradation of some toxic insecticides. Journal of industrial and engineering chemistry, 69, 315-323.
[4] Jorsaraei, S. G. A., Maliji, G., Azadmehr, A., Moghadamnia, A. A., & Faraji, A. A. (2014). Immunotoxicity effects of carbaryl in vivo and in vitro. Environmental toxicology and pharmacology, 38(3), 838-844.
[5] Fadic, X., Placencia, F., Domínguez, A. M., & Cereceda-Balic, F. (2017). Tradescantia as a biomonitor for pesticide genotoxicity evaluation of iprodione, carbaryl, dimethoate and 4, 4′-DDE. Science of The Total Environment, 575, 146-151.
[6] Khara H, Salar Amoli J, Mazlomi H, Nezami Sh, Zolfinejad K, Khodaparast S H, et al. Survey on season agricultural pesticides (hinozan, machete, diazinon) in the Ashmak River of Gilan. Journal of Biological Sciences of Lahijan. 2009;1:29-43 (in Persian).
[7] Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155.
[8] Brienza, M., & Katsoyiannis, I. A. (2017). Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater. Sustainability, 9(9), 1604.
[9] Badawy MI, Montaser Y, Chaly T, Goda-Allah A. Advanced oxidation processes for the removal of organic phosphorous pesticides from wastewater. Desalination. 2005;194:166-75.
[10] Mezzanotte V, Canziani R, Sardi E, Spada L. Removal of pesticides by a combined ozonation/ attached biomass process Sequence. Ozone:Science and Engineering. 2005;27(4):327-31.
[11] Walid KL, Al-Qoda Z. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions. Journal of Hazardous Materials. 2006;137:489-97.
[12] Rajeswari R, Kanmani S. A study on synergistic effect of photocatalytic ozonation for carbaryl degradation. Desalination. 2009 Jun 1;242(1-3):277-85.
[13] Vishnuganth, M. A., Remya, N., Kumar, M., & Selvaraju, N. (2017). Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis. Journal of Environmental Science and Health, Part B, 52(5), 353-360.
[14] Chaudhury CR, Roychowdhury A, Das A, Das D. Magneto-optical properties of α-Fe2O3@ ZnO nanocomposites prepared by the high energy ball-milling technique. Journal of Physics and Chemistry of Solids. 2016;92:38-44.
[15] Güler SH, Güler Ö, Evin E, Islak S. Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik. 2016;127(6):3187-91.
[16] Lemine O, Bououdina M, Sajieddine M, Al-Saie A, Shafi M, Khatab A, et al. Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4. Physica B: Condensed Matter. 2011;406(10):1989-94.
[17] Balachandar, V., Brijitta, J., Viswanathan, K., & Sampathkumar, R. (2020). Investigations on the Structural, Optical and Dielectric Properties of Ball-Milled ZnO–Fe2O3 Nanocomposites. International Journal of Nanoscience, 1950034.
[18] Eaton AD, Franson MAH. Standard methods for the examination of water & wastewater: Amer Public Health Assn; 2017.
[19] Wu, Changle. "Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation." Applied surface science 319 (2014): 237-243.
[20] Malayeri, M., Haghighat, F., & Lee, C. S. (2019). Modeling of volatile organic compounds degradation by photocatalytic oxidation reactor in indoor air: A review. Building and Environment.
[21] Jaafarzadeh Haghighifard, N., Mirali, S., Jorfi, S., Dinarvand, F., & Alavi, N. (2016). Efficiency study on nanophotocatalytic degradation and detoxification of CI direct blue 86 from Aquatic Solution Using UVA/TiO2 and UVA/ZnO. Journal of Mazandaran University of Medical Sciences, 26(143), 145-159.
[22] Mirzaei, A., Chen, Z., Haghighat, F., & Yerushalmi, L. (2016). Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustainable cities and society, 27, 407-418.
[23] Patil, A. B., Patil, K. R., & Pardeshi, S. K. (2010). Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. Journal of Hazardous Materials, 183(1-3), 315-323.
[24] Gaya UI, Abdullah A, Zainal Z , Zobir Hussein M. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions. Hazardous Materials, 2009. 165: 63-75
[25] Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018). Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. Journal of Molecular Liquids, 258, 354-365.