Xu, S., García, A., Su, J., Liu, Q., Tabaković, A., & Schlangen, E. (2018). Self‐Healing Asphalt Review: From Idea to Practice. Advanced Materials Interfaces, 5(17), 1800536.
Tabaković, A. and E. Schlangen, 2015. Self-healing technology for asphalt pavements, in Self-healing Materials. Springer. 285-306.
Norambuena-Contreras, J. and A. Garcia, 2016. Self-healing of asphalt mixture by microwave and induction heating. Materials & Design, 106, 404-414.
García, Á., Schlangen, E., van de Ven, M., & Liu, Q. 2012. A simple model to define induction heating in asphalt mastic. Construction and Building Materials, 31, 38-46.
Liu, K., Dai, D., Fu, C., Li, W., & Li, S. 2020. Induction heating of asphalt mixtures with waste steel shavings. Construction and Building Materials, 234, 117368.
Jahanbakhsh, H., Karimi, M. M., Jahangiri, B., & Nejad, F. M. 2018. Induction heating and healing of carbon black modified asphalt concrete under microwave radiation. Construction and Building Materials, 174, 656-666.
Gómez-Meijide, B., Ajam, H., Lastra-González, P., & Garcia, A. 2016. Effect of air voids content on asphalt self-healing via induction and infrared heating. Construction and Building Materials, 126, 957-966.
Ajam, H., Lastra-González, P., Gómez-Meijide, B., Airey, G., & Garcia, A. 2017. Self-healing of dense asphalt concrete by two different approaches: electromagnetic induction and infrared radiation. Journal of Testing and Evaluation, 45(6), 1933-1940.
Tabatabaee, N. and M.H. Shafiee. Effect of organoclay modified binders on fatigue performance. in 7th RILEM International Conference on Cracking in Pavements. 2012. Springer.
Al-Mansoori, T., Micaelo, R., Artamendi, I., Norambuena-Contreras, J., & Garcia, A. 2017. Microcapsules for self-healing of asphalt mixture without compromising mechanical performance. Construction and Building Materials, 155, 1091-1100.
Karimi, M. M., Jahanbakhsh, H., Jahangiri, B., & Nejad, F. M. 2018. Induced heating-healing characterization of activated carbon modified asphalt concrete under microwave radiation. Construction and Building Materials, 178, 254-271.
García, A., Norambuena-Contreras, J., Bueno, M., & Partl, M. N. 2014. Influence of steel wool fibers on the mechanical, termal, and healing properties of dense asphalt concrete. Journal of Testing and Evaluation, 42(5), 1107-1118.
Wang, Z., Q. Dai, and X. Yang, 2016. Integrated computational–experimental approach for evaluating recovered fracture strength after induction healing of asphalt concrete beam samples. Construction and Building Materials, 106: p. 700-710.
Jeoffroy, E., Bouville, F., Bueno, M., Studart, A. R., & Partl, M. N. 2018. Iron-based particles for the magnetically-triggered crack healing of bituminous materials. Construction and Building Materials, 164, 775-782.
Liu, Z., Luo, S., Wang, Y., & Chen, H. 2019. Induction Heating and Fatigue-Damage Induction Healing of Steel Fiber–Reinforced Asphalt Mixture. Journal of Materials in Civil Engineering, 31(9), 04019180.
Karimi, M. M., Darabi, M. K., Jahanbakhsh, H., Jahangiri, B., & Rushing, J. F. 2019. Effect of steel wool fibers on mechanical and induction heating response of conductive asphalt concrete. International Journal of Pavement Engineering, 1-14.
Menozzi, A., Garcia, A., Partl, M. N., Tebaldi, G., & Schuetz, P. 2015. Induction healing of fatigue damage in asphalt test samples. Construction and Building Materials, 74, 162-168.
Xiao, Y., Wan, M., Jenkins, K. J., Wu, S. P., & Cui, P. Q. 2017. Using activated carbon to reduce the volatile organic compounds from bituminous materials. Journal of Materials in Civil Engineering, 29(10), 04017166.
Gómez-Meijide, B., Ajam, H., Lastra-González, P., & Garcia, A. 2018. Effect of ageing and RAP content on the induction healing properties of asphalt mixtures. Construction and Building Materials, 179, 468-476.
Bell, C.A., A.J. Wieder, and M.J. Fellin, Laboratory aging of asphalt-aggregate mixtures: Field validation. 1994.
Romero, P. and R. Roque, Evaluation of Long-Term Oven Aging of Asphalt Mixtures (AASHTO PP2-95) on Superpave Thermal Cracking Performance Predictions, in Progress of Superpave (Superior Performing Asphalt Pavement): Evaluation and Implementation. 1997, ASTM International.
AASHTO, P., Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). American Association of State Highway Transportation Officials, 2009.
Islam, M.R., M.I. Hossain, and R.A. Tarefder, A study of asphalt aging using Indirect Tensile Strength test. Construction and Building Materials, 2015. 95: p. 218-223.
AASHTO, P., Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). American Association of State Highway Transportation Officials, 2009.
ASTM D3515-01, Standard Specification for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures (Withdrawn 2009), ASTM International, West Conshohocken, PA, 2001, www.astm.org
ASTM D8044-16, Standard Test Method for Evaluation of Asphalt Mixture Cracking Resistance using the Semi-Circular Bend Test (SCB) at Intermediate Temperatures, ASTM International, West Conshohocken, PA, 2016.
AASHTO, T. (2013). 105-13. Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB), American Association of State and Highway Transportation Officials.