مطالعه آزمایشگاهی و تحلیلی رفتار چرخه ای اتصالات سه بعدی خمشی فولادی جوشی تیر I به ستون قوطی با استفاده از دیافراگم داخلی و خارجی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار و عضو هیأت علمی مرکز تحقیقات راه، مسکن و شهرسازی
2 دانشجوی دکترای مهندسی عمران- زلزله، پژوهشکده‌ی ساختمان و مسکن
چکیده
مقاله حاضر، به مطالعه تجربی و تحلیلی رفتار اتصالات سه بعدی خمشی جوشی تیر I به ستون‌های قوطی شکل فولادی، تحت اثر بار محوری ثابت بر روی ستون، بار جانبی چرخه‌ای در یک راستای اتصال و بار ثقلی ثابت در راستای متعا‌مد دیگر آن می‌پردازد. برای این منظور، ابتدا آزمایشات متشکل از چهار نمونه شامل دو نمونه اتصال سه بعدی میانی و دو نمونه‌ی کناری می‌باشند. نمونه‌های میانی شامل یکی ستون قوطی سرد شکل داده شده و تیرهای متصل از چهار طرف همراه با دیافراگم خارجی، و دیگری ستون قوطی ساخته شده از ورق فولادی همراه با دیافراگم داخلی است. نمونه‌های کناری نیز مشابه نمونه‌های میانی دارای دو حالت استفاده از دیافراگم داخلی و دیافراگم خارجی هستند. در اتصالات با دیافراگم خارجی، ورق‌های پوششی فولادی مانند حلقه به دور ستون، با جوش شیاری و به بال‌های تیر، با جوش گوشه متصل شده‌اند. سپس بر اساس نتایج آزمایشگاهی، مدل‌های تحلیلی اجزاء محدود در نرم افزار ABAQUS توسعه داده شد و تأثیر سه پارامتر بار محوری ستون، ضخامت ورق ستون و ضخامت ورق‌های پوششی بر رفتار اتصال میانی با دیافراگم خارجی، به صورت تحلیلی مورد بررسی قرار گرفت. در نتایج آزمایشگاهی تمامی نمونه‌ها ملاحظه شد که رفتار لرزه‌ای نمونه‌های با دیافراگم خارجی در حالت کلی، بسیار نزدیک به نمونه‌های با دیافراگم داخلی است و با مود گسیختگی تشکیل مفصل پلاستیک در تیر و دقیقاً در انتهای ورق‌های پوششی همراه می‌باشد ولی تفاوت جزئی به علت تجربه‌ی کرنش‌های کوچک‌تر از حد تسلیم در چشمه‌ی اتصال در نمونه‌‌ی میانی با دیافراگم خارجی در مقایسه با دیافراگم داخلی مشاهده گردید. نتایج حاصل از تحلیل‌های غیرخطی نیز مطابقت مناسبی با نتایج به دست آمده از آزمایش نشان داد. در بررسی تحلیلی پارامتری مشاهده شد که هر یک از پارامترهای فوق می‌تواند مود گسیختگی و شکل‌پذیری سیستم را تغییر دهد به طوری که با افزایش نسبت بار محوری ستون به مقدار حدود 0.42، با وجود افزایش نسبت اتلاف انرژی، مود گسیختگی از محل تیر به ستون تغییر می‌یابد و برای نسبت‌های بیش‌تر از 0.58، به کمانش کلی ستون و گسیختگی ترد منتهی خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental and analytical study for evaluating the hysteresis behavior of three-dimensional welded steel moment connection of I beam to box column using inner and outer diaphragm

نویسندگان English

Farhang Farahbod 1
Arash Mohammadi Farsani 2
1 Assistant Professor of Road, Housing & Urban Development Research Center (BHRC)
2 Ph. D. Student of Earthquake Engineering, Institute of Building & Housing
چکیده English

The present paper focused on experimental and analytical study for evaluating the behavior of three-dimensional welded steel moment connection of I beam to box column under constant axial load on the column, cyclic loading in one direction and constant gravity load on the other orthogonal direction of the connection. Box columns are suitable sections for bearing loads on buildings because they have the same geometrical properties in two directions due to the symmetry around the two orthogonal axes and on the other hand they facilitate the joining of the orthogonal beams. However, due to the lack of easy access to the inside of the box sections and the need to use continuity plates or stiffeners that can perform the duty of continuity plates, the relevant solutions under different conditions and proper understanding of the behavior of connection components are still under investigation. In this research, first four specimens, including two internal and two external three-dimensional joints, are made and tested. The internal specimens consist of a cold-formed steel box column (HSS) and connected beams from four sides with the external diaphragm, and the other one with a built-up steel column and inner diaphragm. The external specimens are also the same as the internal samples include two types of inner and two types of the outer diaphragm. In all joints with the outer diaphragm, the steel cover plate connected to the column as a collar by groove welding and the web of beams by fillet welding. Then after, based on the experimental results, analytical finite element models are developed using ABAQUS software and the effect of three parameters such as the axial load of the column, the column steel plate thickness, and the thickness of cover plates on the behavior of internal joints with external diaphragm are studied analytically. Generally, experimental results of all specimens showed that the seismic behavior of samples with the external diaphragm is more close to the other one with the inner diaphragm and the failure mode followed by occurring plastic hinge in the beam precisely at the end of cover plate. However, there is a little bit different due to the experience of smaller strains than the yield limit of the panel zone in the internal joint specimen with the outer diaphragm compared to the inner diaphragm. The results extracted from the nonlinear analysis also illustrated suitable accuracy with the experimental results. Each of the parameters mentioned above could change the failure mode and ductility of the connection system. In other words, increasing the ratio of the axial load to the nominal capacity of the column to the value of 0.42, the failure mode transfers from beam to the column despite the growing of ratio of energy dissipation. Meanwhile, for the column bearing load ratio more than 0.58, global buckling of the column and brittle failure will happen. Moreover, by decreasing the plate thickness of the column less than 15 mm, the failure mode transfers from beam to column and the energy dissipation of the specimens reduces. Also, for cover plates, less than 20 mm thick, the mode of failure will take place in the column. However, if higher strength is used for both cover plates and plate thickness of the column, the lower thickness of the cover plate will be required in order to create the failure mechanism in the beam.

کلیدواژه‌ها English

Outer and inner diaphragm
three-dimensional moment connection
cold steel column (HSS)
cyclic lateral load
[1‍‍] Ting L. C., Shanmugam N. E. & Lee S. L. 1991 Box-column to I-beam connections with external stiffeners. Journal of Constructional Steel Research, 18(3), 209-226.
[2‍‍] Lee S. L., Ting L. C. & Shanmugam N. E. 1993 Use of external T-stiffeners in box-column to I-beam connections. Journal of Constructional Steel Research, 26, 77-98.
[3‍‍] Alostaz Y. M. & Schneider S. P. 1996 Analytical behavior of connections to concrete-filled steel tubes. Journal of Constructional Steel Research, 40(2), 95-127.
[4‍‍] Schneider S. P. & Alostaz Y. M. 1998 Experimental behavior of connections to concrete-filled steel tubes. Journal of Constructional Steel Research, 45(3), 321-352.
[5‍‍] Mirghaderi S. R., Torabian Sh. & Keshavarzi F. 2010 I-beam to Box-column connection by a vertical plate passing through the column. Engineering Structures, 32, 2034-2048.
[6‍‍] Han L. H. & Li W. 2010 Seismic performance of CFST column to steel beam joint with RC slab: Experiments. Journal of Constructional Steel Research, 66, 1374-1386.
[7‍‍] Goswami R. & Murty C. V. R. 2010 Externally reinforced welded I-beam-to-Box-column seismic connection. Journal of Engineering Mechanics, 136(1), 23-30.
[8‍‍] Li W. & Han L. H. 2011(1) Seismic performance of CFST column to steel beam joint with RC slab: Analysis. Journal of Constructional Steel Research, 67, 127-139.
[9‍‍] Wang W., Chen Y., Li W. & Leon R. T. 2011 Bidirectional seismic performance of steel beam to circular tubular column connections with outer diaphragm. Earthquake Engineering and Structural Dynamics, 40, 1063-1081.
[10‍‍] Zhang D., Gao Sh. & Gong J. 2012 Seismic behaviour of steel beam to circular CFST column assemblies with external diaphragms. Journal of Constructional Steel Research, 76, 155-166.
[11‍‍] Bagheri Sabbagh A., Petkovski M., Pilakoutas K. & Mirghaderi R. 2012 Experimental work on cold-formed steel element for earthquake resilient moment frame buildings. Engineering Structures, 42, 371-386.
[12‍‍] Saneei Nia Z., Ghassemieh M. & Mazroi A. 2013 Panel zone evaluation of direct connection to box column subjected to bidirectional loading. The Structural Design of Tall and Special Buildings, 23, 833-853.
[13‍‍] Saneei Nia Z., Mazroi A. & Ghassemieh M. 2014 Cyclic performance of flange-plate connection to box column with finger shaped plate. Journal of Constructional Steel Research, 101, 207-223.
[14‍‍] Saneei Nia Z., Mazroi A., Ghassemieh M. & Pezeshki H. 2014 Seismic performance and comparison of three different I beam to box column joints. Earthquake Engineering and Engineering Vibration, 13(4), 717-729.
[15‍‍] Erfani S., Asnafi A. A. & Goudarzi A. 2016 Connection of I-beam to box-column by a short stub beam. Journal of Constructional Steel Research, 127, 136-150.
[16‍‍] Road, Housing and Urban Development Research Center. 2014 Iranian National Building Code: Design and Construction of Steel Buildings- Division 10. Tehran, Iran (In Persian).
[17‍‍] AISC/ANSI 341 2016 Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Inc., Chicago (IL), USA.
[18‍‍] AISC/ANSI 358 2016 Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, American Institute of Steel Construction, Inc., Chicago (IL), USA.
[19‍‍] CIDECT 2004 Design Guide 9 for Structural Hollow Section Column Connections, International Committee for the Development and Study of Tubular Structures (CIDECT), Köln.
[20‍‍] SAC 1997 Protocol for Fabrication, Inspection, Testing, and Documentation of Beam-Column Connection Tests and Other Specimens, SAC/BD-97/02 Version 1.1, SAC Joint Venture, Sacramento, CA.
[21‍‍] SIMULIA 2006 Abaqus user’s manual. Version 6.6, Providense, Rhode Island, USA.