[1] Ghalebizadeh M., Ayati B., Solar Photoelectrocatalytic Degradation of Acid Orange 7 with ZnO/TiO2 Nanocomposite Coated on Stainless Steel Electrode, Process Safety and Environmental Protection Journal, Vol. 103, pp. 192-202, Sept. 2016, doi: 10.1016/j.psep.2016.07.009
[2] Zhang, Z. Z., Cheng, Y. F., Bai, Y. H., Xu, J. J., Shi, Z. J., Zhang, Q. Q., & Jin, R. C. (2018). Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment. Science of the Total.
[3] Begum, S., & Ahmaruzzaman, M. (2018). Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen. Applied Surface Science, 449, 780-789.
[4] Zheng, X., Huang, M., You, Y., Fu, X., Liu, Y., & Wen, J. (2018). One-pot synthesis of sandwich-like MgO@ Carbon with enhanced sorption capacity of organic dye. Chemical Engineering Journal, 334, 1399-1409.
[5] Johannes, Lehmann., Stephen, Joseph., (2009), Biochar for Environmental Management, Science and Technology.
[6] Inyang, M., Gao, B., Zimmerman, A., Zhang, M., & Chen, H. (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal, 236, 39-46.
[7] Khataee, A., Gholami, P., Kalderis, D., Pachatouridou, E., & Konsolakis, M. (2018). Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye. Ultrasonics Sonochemistry, Vol.41, pp. 503-513.
[8] Arabyarmohammadi, H., Darban, A. K., Abdollahy, M., Yong, R., Ayati, B., Zirakjou, A., & van der Zee, S. E. (2018). Utilization of a novel chitosan/clay/Biochar Nanobiocomposite for immobilization of heavy metals in acid soil environment. Journal of Polymers and the Environment, 26(5), 2107-2119.
[9] Darvishi Cheshmeh Soltani, R., Rezaee, A., & Khataee, A. (2013). Combination of carbon black–ZnO/UV process with an electrochemical process equipped with a carbon black–PTFE-coated gas-diffusion cathode for removal of a textile dye. Industrial & Engineering Chemistry Research, 52(39), 14133-14142.
[10] Singh, J., Kumari, P., & Basu, S. (2019). Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 371, 136-143
[11] Ferreira, C. S., Santos, P. L., Bonacin, J. A., Passos, R. R., & Pocrifka, L. A. (2015). Rice Husk Reuse in the Preparation of SnO2/SiO2 Nanocomposite. Materials Research, 18(3), 639-643.
[12] Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 5(1), 601-611.
[13] Lin, Y. C., Ho, S. H., Zhou, Y., & Ren, N. Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource technology, 259, 104-110.
[14] Kelm, M. A. P., da Silva Júnior, M. J., de Barros Holanda, S. H., de Araujo, C. M. B., de Assis Filho, R. B., Freitas, E. J., ... & da Motta Sobrinho, M. A. (2019). Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes. Environmental Science and Pollution Research, 26(28), 28558-28573.
[15] Zhang, P., O’Connor, D., Wang, Y., Jiang, L., Xia, T., Wang, L., ... & Hou, D. (2020). A green biochar/iron oxide composite for methylene blue removal. Journal of hazardous materials, 384, 121286.
[16] Federation, W. E., & American Public Health Association. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.
[17] Damodar, R. A., You, S. J., & Ou, S. H. (2010). Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 76(1), 64-71.
[18] Darezereshki, E., Tavakoli, F., Bakhtiari, F., Vakylabad, A. B., & Ranjbar, M. (2014). Innovative impregnation process for production of γ-Fe2O3–activated carbon nanocomposite. Materials Science in Semiconductor Processing, 27, 56-62.
[19] Ibupoto, A. S., Qureshi, U. A., Ahmed, F., Khatri, Z., Khatri, M., Maqsood, M., ... & Kim, I. S. (2018). Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chemical Engineering Research and Design, 136, 744-752.
[20] Siyasukh, A., Chimupala, Y., & Tonanon, N. (2018). Preparation of magnetic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity. Carbon, 134, 207-221.
[21] Duman, O., Tunc, S., & Polat, T. G. (2015). Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Microporous and Mesoporous Materials, 210, 176-184.
[22] Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. J. I. J. C. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38-45.
[23] Rahmati, M. M., Rabbani, P., Abdolali, A., & Keshtkar, A. R. (2011). Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. Journal of Hazardous Materials, 185(1), 401-407.
[24] Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Bao, N., & Gao, B. Y. (2008). Competitive biosorption of zinc (II) and cobalt (II) in single-and binary-metal systems by aerobic granules. Journal of Colloid and Interface Science, 324(1-2), 1-8.
[25] Volesky, B. (2003). Biosorption process simulation tools. Hydrometallurgy, 71(1-2), 179-190.
[26] Yari, S., Abbasizadeh, S., Mousavi, S. E., Moghaddam, M. S., & Moghaddam, A. Z. (2015). Adsorption of Pb (II) and Cu (II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Safety and Environmental Protection, 94, 159-171.
[27] Isah, U., Abdulraheem, G., Bala, S., Muhammad, S., & Abdullahi, M. (2015). Kinetics, equilibrium and thermodynamics studies of CI Reactive Blue 19 dye adsorption on coconut shell based activated carbon. International Biodeterioration & Biodegradation, 102, 265-273.
[28] Lin, J., Luo, Z., Liu, J., & Li, P. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87, 24-31.
[29] Han, K., Peng, X. L., Li, F., & Yao, M. M. (2018). SnO2 composite films for enhanced photocatalytic activities. Catalysts, 8(10), 453.
[30] Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2014). Introduction to spectroscopy. Cengage Learning.
[31] Yin, D., Zhang, L., Liu, B., & Wu, M. (2012). Ag/ZnO-C nanocomposite-preparation and photocatalytic properties. Journal of Nanoscience and Nanotechnology, 12(3), 2248-2253.
[32] Liu, M., Chen, Q., Lu, K., Huang, W., Lü, Z., Zhou, C., ... & Gao, C. (2017). High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Separationand Purification Technology, Vol. 173, pp.135-143.
[33] Chandraboss, V. L., Kamalakkannan, J., Prabha, S., & Senthilvelan, S. (2015). An efficient removal of methyl violet from aqueous solution by an AC-Bi/ZnO nanocomposite material. RSC Advances, 5(33), 25857-25869.
[34] Sobana, N., Krishnakumar, B., & Swaminathan, M. (2013). Synergism and effect of operational parameters on solar photocatalytic degradation of an azo dye (Direct Yellow 4) using activated carbon-loaded zinc oxide. Materials Science in Semiconductor Processing, 16(3), 1046-1051
[35] Jung, G., & Kim, H. I. (2014). Synthesis and photocatalytic performance of PVA/TiO2/graphene‐MWCNT nanocomposites for dye removal. Journal of Applied Polymer Science, 131(17).
[36] Alkan, M., Çelikçapa, S., Demirbaş, Ö., & Doğan, M. (2005). Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes and Pigments, 65(3), 251-259.
[37] Fang, R., Cheng, X., & Xu, X. (2010). Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresource Technology, 101(19), 7323-7329.
[38] Alouani, M. E. L., Alehyen, S., Achouri, M. E. L., & Taibi, M. (2018). Removal of cationic dye-methylene blue-from aqueous solution by adsorption on fly ash-based geopolymer. J Mater Environ Sci, 9(1), 32-46.
[39] Ma, J., Wang, K., Li, L., Zhang, T., Kong, Y., & Komarneni, S. (2015). Visible-light photocatalytic decolorization of Orange II on Cu2O/ZnO nanocomposites. Ceramics International, 41(2), 2050-2056.
[40] Aguedal, H., Iddou, A., Aziz, A., Shishkin, A., Ločs, J., & Juhna, T. (2019). Effect of thermal regeneration of diatomite adsorbent on its efficacy for removal of dye from water. International Journal of Environmental Science and Technology, 16(1), 113-124.
[41] Znad, H., Abbas, K., Hena, S., & Awual, M. R. (2018). Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. Journal of Environmental Chemical Engineering, 6(1), 218-227.
[42] Zhou, M., Oturan, M. A., & Sires, I. (2018). Electro-Fenton Process. Springer.
[43] Li, Y., Liu, F., Xia, B., Du, Q., Zhang, P., Wang, D., ... & Xia, Y. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. Journal of Hazardous Materials, 177(1-3), 876-880.
[44] W John Thomas, F., & Crittenden, B. (1998). Adsorption technology and design. Butterworth-Heinemann. Environment, 622, 402-409.
[45] Yusuf, M., Khan, M. A., Otero, M., Abdullah, E. C., Hosomi, M., Terada, A., & Riya, S. (2017). Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid and Interface Science, 493, 51-61.
[46] Jung, K. W., Choi, B. H., Hwang, M. J., Jeong, T. U., & Ahn, K. H. (2016). Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresource Technology, 219, 185-195.
[47] Xiong, S., Kong, L., Zhong, Z., & Wang, Y. (2016). Dye adsorption on zinc oxide nanoparticulates atomic‐layer‐deposited on polytetrafluoroethylene membranes. AIChE Journal, 62(11), 3982-3991.
[48] Li, T., Liu, Y., Wang, S., Zeng, G., Zheng, B., Wang, H., ... & Zeng, X. (2015). Synthesis and adsorption application of amine shield-introduced-released porous chitosan hydrogel beads for removal of acid orange 7 from aqueous solutions. RSC Advances, 5(77), 62778-62787.
[49] Khani, M. H. (2011). Uranium biosorption by Padina sp. algae biomass: Kinetics and thermodynamics. Environmental Science and Pollution Research, 18(9), 1593.
[50] Pahlavanzadeh, H., Keshtkar, A. R., Safdari, J., & Abadi, Z. (2010). Biosorption of nickel (II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies. Journal of Hazardous Materials, 175(1-3), 304-310.