1. McLellan BC, Williams RP, Lay J, et al (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Clean Prod 19:1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010
2. Li N, Shi C, Wang Q, et al (2017) Composition design and performance of alkali-activated cements. Mater Struct 50:1–11. https://doi.org/10.1617/s11527-017-1048-0
3. Mehdizadeh H, Najafi Kani E (2018) Rheology and apparent activation energy of alkali activated phosphorous slag. Constr Build Mater 171:197–204. https://doi.org/10.1016/j.conbuildmat.2018.03.130
4. Hausmann MR (1990) Engineering principles of ground modification. McGraw-Hill
5. Davidovits PJ (2002) 30 Years of Successes and Failures in Geopolymer Applications . Market Trends and Potential Breakthroughs . 1–16
6. Najafi E, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34:25–33. https://doi.org/10.1016/j.cemconcomp.2011.07.007
7. Ghadir P, Ranjbar N (2018) Clayey soil stabilization using geopolymer and Portland cement. Constr Build Mater 188:361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207
8. Allahverdi A, Najafi Kani E (2009) Construction wastes as raw materials for geopolymer binders. Int J Civ Eng 7:154–160
9. Alsafi S, Farzadnia N, Asadi A, Kim B (2017) Collapsibility potential of gypseous soil stabilized with fly ash geopolymer ; characterization and assessment. 137:390–409. https://doi.org/10.1016/j.conbuildmat.2017.01.079
10. Liu Z, Asce SM, Cai CS, et al (2014) Feasibility Study of Loess Stabilization with Fly Ash – Based Geopolymer. 1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001490.
11. Sargent P, Hughes PN, Rouainia M, White ML (2013) The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Eng Geol 152:96–108. https://doi.org/10.1016/j.enggeo.2012.10.013
12. Yi Y, Li C, Liu S, Asce M (2010) Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay. J Materail Civ Eng 11:246–250. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001100.
13. Yi Y, Gu L, Liu S (2015) Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Appl Clay Sci 103:71–76. https://doi.org/10.1016/j.clay.2014.11.005
14. Yi Y, Asce SM, Liska M, Al-tabbaa A (2014) Properties of Two Model Soils Stabilized with Different Blends and Contents of GGBS , MgO , Lime , and PC. 267–274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000806.
15. Du Y, Yu B, Liu K, et al (2015) Physical , Hydraulic , and Mechanical Properties of Clayey Soil Stabilized by Lightweight Alkali-Activated Slag Geopolymer. 1–10. https://doi.org/10.1061/(ASCE)MT.1943-5533
16. Yu B-W, Du Y-J, Jin F, Liu C-Y (2016) Multiscale Study of Sodium Sulfate Soaking Durability of Low Plastic Clay Stabilized by Reactive Magnesia-Activated Ground Granulated Blast-Furnace Slag. J Mater Civ Eng 28:04016016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001517
17. Lloyd RR, Provis JL, Van Deventer JSJ (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J Mater Sci 44:608–619. https://doi.org/10.1007/s10853-008-3077-0
18. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2012) Effect of calcium content on soil stabilisation with alkaline activation. Constr Build Mater 29:167–174. https://doi.org/10.1016/j.conbuildmat.2011.10.049