1- Zaji A.H. and Bonakdari H. 2014. Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs. Flow Measurement and Instrumentation, 40, 149-156.
2- Ebtehaj I., Bonakdari H., Zaji A.H., Azimi H. & Sharifi A. 2015. Gene expression programming to predict the discharge coefficient in rectangular side weirs. Applied Soft Computing, 35, 618-628.
3- Khoshbin F., Bonakdari H., Ashraf Talesh S.H., Ebtehaj I., Zaji A.H. & Azimi H. 2016. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Engineering Optimization, 48(6), 933-948.
4- Roushangar K., Khoshkanar R. & Shiri J. 2016. Predicting trapezoidal and rectangular side weirs discharge coefficient using machine learning methods”, ISH Journal of Hydraulic Engineering, 22(3), 254-261.
5- Azimi H., Shabanlou S., Ebtehaj I., Bonakdari H. & Kardar S. 2017a. Combination of computational fluid dynamics, adaptive neuro-fuzzy inference system, and genetic algorithm for predicting discharge coefficient of rectangular side orifices. Journal of Irrigation and Drainage Engineering, 143(7), 04017015.
6- Azimi H., Bonakdari H. & Ebtehaj, I. 2017b. Sensitivity analysis of the factors affecting the discharge capacity of side weirs in trapezoidal channels using extreme learning machines. Flow Measurement and Instrumentation, 54, 216-223.
7- Haghiabi A.H., Parsaie A. & Ememgholizadeh S. 2017. Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System. Alexandria Engineering Journal.
8- Roushangar K., Alami M.T., Majedi Asl M. & Shiri J. 2017. Modeling discharge coefficient of normal and inverted orientation labyrinth weirs using machine learning techniques. ISH Journal of Hydraulic Engineering, 23(3), 331-340.
9- Roushangar K., Alami M.T., Shiri J. & Asl, M.M. 2018. Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine. Hydrology Research, 49(3), 924-938.
10- Salazar F. & Crookston, B.M. 2019. A Performance Comparison of Machine Learning Algorithms for Arced Labyrinth Spillways. Water, 11(3), 544.
11- Bilhan O., Emiroglu M.E., Miller C.J. & Ulas M. 2019. The evaluation of the effect of nappe breakers on the discharge capacity of trapezoidal labyrinth weirs by ELM and SVR approaches. Flow Measurement and Instrumentation, 64, 71-82.
12- Huang G.B., Zhu Q.Y. & Siew, C.K. 2006. Extreme learning machine: theory and applications. Neurocomputing, 70(1), 489-501.
13- Zhang K. & Luo M. 2015. Outlier-robust extreme learning machine for regression problems. Neurocomputing, 151, 1519-1527.
14- Kumar S., Ahmad Z. & Mansoor T. 2011. A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs. Journal of Flow Measurement and Instrumentation, 22(3), 175-180.
15- Seamons T.R. 2014. Labyrinth weirs: a look into geometric variation and its effect on efficiency and design method predictions. Master of Science thesis. Utah State University. USA.